DOI QR코드

DOI QR Code

Lubrication phenomenon in the stagnation point flow of Walters-B nanofluid

  • Muhammad Taj (Department of Mathematics, University of Azad Jammu & Kashmir) ;
  • Manzoor Ahmad (Department of Mathematics, University of Azad Jammu & Kashmir) ;
  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Saima Akram (Department of Mathematics, Govt. College Women University) ;
  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Madeeha Tahir (Department of Mathematics, Govt. College Women University) ;
  • Faisal Mehmood Butt (Department of Electrical Engineering, University of Azad Jammu and Kashmir Muzaffarabad) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.06.11
  • Accepted : 2023.05.03
  • Published : 2023.05.25

Abstract

The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. For the solution, the governing partial differential equation is transformed into a series of non-linear ordinary differential equations. With the help of hybrid homotopy analysis method; that consists of both the homotopy analysis and shooting method these equations can be solved. The influence of different involved constraints on quantities of interest are sketched and discussed. The viscoelastic parameter, slip parameters on velocity component and temperature are analyzed. The velocity varies by increase in viscoelastic parameter in the presence of slip parameter. The slip on the surface has major effect and mask the effect of stagnation point for whole slip condition and throughout the surface velocity remained same. Matched the present solution with previously published data and observed good agreement. It can be seen that the slip effects dominates the effects of free stream and for the large values of viscoelastic parameter the temperature as well as the concentration profile both decreases.

Keywords

Acknowledgement

This study si supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).

References

  1. Abbas, S.Z., Waqas, M., Thaljaoui, A., Zubair, M., Riahi, A., Chu, Y.M. and Khan, W.A. (2022), "Modeling and analysis of unsteady second-grade nanofluid flow subject to mixed convection and thermal radiation", Soft Comput., 1-10. https://doi.org/10.1007/s00500-021-06575-7 
  2. Ahmad, M., Ahmad, I. and Sajid, M. (2016), "Heat transfer analysis in an axisymmetric stagnation-point flow of second grade fluid over a lubricated surface", Am. J. Heat Mass Transfer, 3(1), 1-14. https://doi.org/10.7726/ajhmt.2016.1001 
  3. Ahmad, M., Sajid, M., Hayat, T. and Ahmad, I. (2015), "On numerical and approximate solutions for stagnation point flow involving third order fluid", AIP Advances, 5(6), 067138. https://doi.org/10.1063/1.4922878 
  4. Ahmad, M., Jalil, F., Taj, M. and Shehzad, S.A. (2020a), "Lubrication aspects in an axisymmetric magneto nanofluid flow with radiated chemical reaction", Heat Transfer, 49(6), 3489-3502. https://doi.org/10.1002/htj.21784 
  5. Ahmad, M., Shehzad, S.A., Taj, M. and Ramesh, G.K. (2020b), "Magnetized mixed convection second-grade fluid flow adjacent to a lubricated vertical surface", Heat Transfer, 49(6), 3958-3978. https://doi.org/10.1002/htj.21817 
  6. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585 
  7. Bhattacharyya, K., Layek, G.C. and Seth, G.S. (2014), "Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface", Physica Scripta, 89(9), 095203. https://doi.org/10.1088/0031-8949/89/9/095203 
  8. Buongiorno, J. (2006), "Convective transport in nanofluids", J. Heat Transfer, 128, 240-250. https://doi.org/10.1115/1.2150834 
  9. Chaim, T.C. (1994), "Stagnation-point flow towards a stretching plate", J. Phys. Soc. Japan, 63(6), 2443-2444. https://journals.jps.jp/doi/10.1143/JPSJ.63.2443 
  10. Choi, S.U. and Eastman, J.A. (1995), Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP84938; CONF-951135-29), Argonne National Lab., IL, USA. https://www.osti.gov/biblio/196525 
  11. Chu, Y.M., Shah, F., Khan, M.I., Kadry, S., Abdelmalek, Z. and Khan, W.A. (2020a), "Cattaneo-Christov double diffusions (CCDD) in entropy optimized magnetized second grade nanofluid with variable thermal conductivity and mass diffusivity", J. Mater. Res. Technol., 9(6), 13977-13987. https://doi.org/10.1016/j.jmrt.2020.09.101 
  12. Chu, Y.M., Hashmi, M.S., Khan, N., Khan, S.U., Khan, M.I., Kadry, S. and Abdelmalek, Z. (2020b), "Thermophoretic particles deposition features in thermally developed flow of Maxwell fluid between two infinite stretched disks", J. Mater. Res. Technol., 9(6), 12889-12898. https://doi.org/10.1016/j.jmrt.2020.09.011 
  13. Chung, J.D., Ramzan, M., Gul, H., Gul, N., Kadry, S. and Chu, Y.M. (2021), "Partially ionized hybrid nanofluid flow with thermal stratification", J. Mater. Res. Technol., 11, 1457-1468. https://doi.org/10.1016/j.jmrt.2021.01.095 
  14. Crane, L.J. (1970), "Flow past a stretching plate", J. Appl. Mathe. Phys., 21(4), 645-647. https://doi.org/10.1007/BF01587695 
  15. Daba, M. and Devaraj, P. (2016), "Unsteady boundary layer flow of a Nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation", Thermo Phys. Aeromech., 23(3), 403-413. https://doi.org/10.1134/S0869864316030100 
  16. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065 
  17. Ferdows, M., Khan, M.S., Alam, M.M. and Afify, A.A. (2017), "MHD boundary layer flow and heat transfer characteristics of a nanofluid over a stretching sheet. Acta Universitatis Sapientiae", Mathematica, 9(1), 140-161. https://doi.org/10.1515/ausm.2017.0009 
  18. Ge-JiLe, H., Javid, K., Khan, S.U., Raza, M., Khan, M.I. and Qayyum, S. (2021), "Double diffusive convection and Hall effect in creeping flow of viscous nanofluid through a convergent microchannel: a biotechnological applications", Comput. Methods Biomech. Biomed. Eng., 24(12), 1326-1343. https://doi.org/10.1080/10255842.2021.1888373 
  19. Halim, N.A. and Noor, N.F.M. (2015), "Analytical solution for Maxwell nanofluid boundary layer flow over a stretching surface", AIP Conference Proceedings, Vol. 1682, No. 1, p. 020006. https://doi.org/10.1063/1.4932415 
  20. Haq, F., Kadry, S., Chu, Y.M., Khan, M. and Khan, M.I. (2020), "Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy", J. Mater. Res. Technol., 9(5), 10468-10477. https://doi.org/10.1016/j.jmrt.2020.07.025 
  21. Hayat, T., Muhammad, T., Alsaedi, A. and Alhuthali, M.S. (2015), "Magneto hydrodynamics three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation", J. Magnet. Magnet. Mater., 385, 222-229. https://doi.org/10.1016/j.jmmm.2015.02.046 
  22. Hiemenz, K. (1911), "Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder", Dinglers Polytech. J., 326, 321-324. https://lib.ugent.be/catalog/rug01:001856944 
  23. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039 
  24. Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032 
  25. Khan, U., Zaib, A., Waini, I., Ishak, A., Sherif, E.S.M., Xia, W.F. and Muhammad, N. (2022), "Impact of Smoluchowski temperature and Maxwell velocity slip conditions on axisymmetric rotated flow of hybrid nanofluid past a porous moving rotating disk", Nanomaterials, 12(2), 276. https://doi.org/10.3390/nano12020276 
  26. Kumari, M. and Nath, G. (1999), "Flow and heat transfer in a stagnation-point flow over a stretching sheet with a magnetic field", Mech. Res. Commun., 26(4), 469-478. https://doi.org/10.1016/S0093-6413(99)00051-8 
  27. Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms", Int. Commun. Heat Mass Transfer, 37(10), 421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015 
  28. Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Thermal Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015 
  29. Li, X., Dong, Z.Q., Wang, L.P., Niu, X.D., Yamaguchi, H., Li, D.C. and Yu, P. (2023), "A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows", Appl. Mathe. Modell., 117, 219-250. https://doi.org/10.1016/j.apm.2022.12.025 
  30. Liao, S. (2012), Homotopy Analysis Method in Nonlinear Differential Equation, Higher Education Press, Beijing, China, pp. 153-165. https://doi.org/10.1007/978-3-642-25132-0 
  31. Liu, W., Zhao, C., Zhou, Y. and Xu, X. (2022), "Modeling of Vapor-Liquid Equilibrium for Electrolyte Solutions Based on COSMO-RS Interaction", J. Chem., 1-13. https://doi.org/10.1155/2022/9070055 
  32. Mahapatra, T.R. and Gupta, A.S. (2001), "Magneto hydrodynamics stagnation-point flow towards a stretching sheet", Acta Mechanics, 152(1-4), 191-196. https://doi.org/10.1007/BF01176953 
  33. Mahmoud, M.A. and Waheed, S.E. (2012), "MHD stagnation point flow of a micro polar fluid towards a moving surface with radiation", Meccanica, 47(5), 1119-1130. https://doi.org/10.1007/s11012-011-9498-x 
  34. Mahmood, K., Sajid, M., Ali, N. and Javed, T. (2017), "MHD mixed convection stagnation point flow of a viscous fluid over a lubricated vertical surface", Industr. Lubricat. Tribol., 69(4), 527-535. https://doi.org/10.1108/ILT-02-2016-0025 
  35. Makinde, O.D. and Aziz, A. (2011), "Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition", Int. J. Thermal Sci., 50(7), 1326-1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019 
  36. Malik, M.Y., Hussain, A. and Nadeem, S. (2013), "Boundary layer flow of an Eyring-Powell model fluid due to a stretching cylinder with variable viscosity", Scientia Iranica, 20(2), 313-321. https://doi.org/10.1016/j.scient.2013.02.028 
  37. Maouedj, R., Menni, Y., Inc, M., Chu, Y.M., Ameur, H. and Lorenzini, G. (2021), "Simulating the Turbulent Hydrothermal Behavior of Oil/MWCNT Nano fluid in a Solar Channel Heat Exchanger Equipped with Vortex Generators", Comput. Model. Eng. Sci., 126(3), 855-889. https://doi.org/10.32604/cmes.2021.014524 
  38. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539 
  39. Muhammad, A. and Shahzad, A. (2011), "Radiation effects on MHD boundary layer stagnation point flow towards a heated shrinking sheet", World Appl. Sci. J., 13(7), 1748-1756. https://doi.org/10.1080/00986445.2011.631202 
  40. Mustafaa, M., Hayat, T. and Obaidat, S. (2013), "Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions", Int. J. Numer. Methods Heat Fluid Flow, 23(6), 945-959. https://doi.org/10.1108/HFF-09-2011-0179 
  41. Na, T.Y. (Ed.). (1980), Computational Methods in Engineering Boundary Value Problems, Academic Press. ISBN: 978-0-12-512650-2 
  42. Prasher, R., Song, D., Wang, J. and Phelan, P. (2006), "Measurements of nanofluid viscosity and its implications for thermal applications", Appl. Phys. Lett., 89(13), 133108. https://doi.org/10.1063/1.2356113 
  43. Qu, M., Liang, T., Hou, J., Liu, Z., Yang, E. and Liu, X. (2022), "Laboratory study and field application of amphiphilic molybdenum disulfide nanosheets for enhanced oil recovery", J. Petrol. Sci. Eng., 208, 109695. https://doi.org/10.1016/j.petrol.2021.109695 
  44. Ramesh, K., Khan, S.U., Jameel, M., Khan, M.I., Chu, Y.M. and Kadry, S. (2020), "Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy", Surfaces Interf., 21, 100749. https://doi.org/10.1016/j.surfin.2020.100749 
  45. Rashidi, M.M., Rostami, B., Freidoonimehr, N. and Abbasbandy, S. (2014), "Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects", Ain Shams Eng. J., 5(3), 901-912. https://doi.org/10.1016/j.asej.2014.02.007 
  46. Sajid, M., Mahmood, K. and Abbas, Z. (2012), "Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface", Chinese Phys. Lett., 29(2), 024702. https://doi.org/10.1088/0256-307X/29/2/024702 
  47. Sajid, M., Javed, T., Abbas, Z. and Ali, N. (2013), "Stagnationpoint flow of a viscoelastic fluid over a lubricated surface", Int. J. Nonlinear Sci. Numer. Simul., 14(5), 285-290. https://doi.org/10.1515/ijnsns-2012-0046 
  48. Sajid, M., Ahmad, M., Ahmad, I., Taj, M. and Abbasi, A. (2015a), "Axisymmetric stagnation-point flow of a third-grade fluid over a lubricated surface", Adv. Mech. Eng., 7(8), 1-8. https://doi.org/10.1177/1687814015591735 
  49. Sajid, M., Arshad, A., Javed, T. and Abbas, Z. (2015b), "Stagnation point flow of Walters-B fluid using hybrid homotopy analysis method", Arab. J. Sci. Eng., 40(11), 3313-3319. https://doi.org/10.1007/s13369-015-1781-z 
  50. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043 
  51. Santra, B., Dandapat, B.S. and Andersson, H.I. (2007), "Axisymmetric stagnation-point flow over a lubricated surface", Acta Mech., 194(1-4), 1-10. https://doi.org/10.1007/s00707-007-0484-2 
  52. Sharma, P.R. and Singh, G. (2009), "Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet", J. Appl. Fluid Mech., 2(1), 13-21. https://www.sid.ir/en/journal/ViewPaper.aspx?id=125718  https://doi.org/10.36884/jafm.2.01.11851
  53. Sheikholeslami, M. (2018), "CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion", J. Molecul. Liquids, 249, 921-929. https://doi.org/10.1016/j.molliq.2017.11.118 
  54. Sheikholeslami, M., Shehzad, S.A. and Li, Z. (2018), "Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces", Int. J. Heat Mass Transfer, 125, 375-386. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.076 
  55. Waqas, M., Khan, M.I., Asghar, Z., Kadry, S., Chu, Y.M. and Khan, W.A. (2020), "Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier's and Fick's concept", J. Mater. Res. Technol., 9(5), 11080-11086. https://doi.org/10.1016/j.jmrt.2020.07.068 
  56. White, F.M. and Corfield, I. (2006), Viscous fluid flow, McGraw-Hill, New York, USA, Vol. 3, pp. 433-434. ISBN 0-07-069712-4 
  57. Xiang, J., Deng, L., Zhou, C., Zhao, H., Huang, J. and Tao, S. (2022), "Heat Transfer Performance and Structural Optimization of a Novel Micro-channel Heat Sink", Chinese J. Mech. Eng., 35(1). https://doi.org/10.1186/s10033-022-00704-5