Acknowledgement
This study si supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).
References
- Abbas, S.Z., Waqas, M., Thaljaoui, A., Zubair, M., Riahi, A., Chu, Y.M. and Khan, W.A. (2022), "Modeling and analysis of unsteady second-grade nanofluid flow subject to mixed convection and thermal radiation", Soft Comput., 1-10. https://doi.org/10.1007/s00500-021-06575-7
- Ahmad, M., Ahmad, I. and Sajid, M. (2016), "Heat transfer analysis in an axisymmetric stagnation-point flow of second grade fluid over a lubricated surface", Am. J. Heat Mass Transfer, 3(1), 1-14. https://doi.org/10.7726/ajhmt.2016.1001
- Ahmad, M., Sajid, M., Hayat, T. and Ahmad, I. (2015), "On numerical and approximate solutions for stagnation point flow involving third order fluid", AIP Advances, 5(6), 067138. https://doi.org/10.1063/1.4922878
- Ahmad, M., Jalil, F., Taj, M. and Shehzad, S.A. (2020a), "Lubrication aspects in an axisymmetric magneto nanofluid flow with radiated chemical reaction", Heat Transfer, 49(6), 3489-3502. https://doi.org/10.1002/htj.21784
- Ahmad, M., Shehzad, S.A., Taj, M. and Ramesh, G.K. (2020b), "Magnetized mixed convection second-grade fluid flow adjacent to a lubricated vertical surface", Heat Transfer, 49(6), 3958-3978. https://doi.org/10.1002/htj.21817
- Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
- Bhattacharyya, K., Layek, G.C. and Seth, G.S. (2014), "Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface", Physica Scripta, 89(9), 095203. https://doi.org/10.1088/0031-8949/89/9/095203
- Buongiorno, J. (2006), "Convective transport in nanofluids", J. Heat Transfer, 128, 240-250. https://doi.org/10.1115/1.2150834
- Chaim, T.C. (1994), "Stagnation-point flow towards a stretching plate", J. Phys. Soc. Japan, 63(6), 2443-2444. https://journals.jps.jp/doi/10.1143/JPSJ.63.2443
- Choi, S.U. and Eastman, J.A. (1995), Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP84938; CONF-951135-29), Argonne National Lab., IL, USA. https://www.osti.gov/biblio/196525
- Chu, Y.M., Shah, F., Khan, M.I., Kadry, S., Abdelmalek, Z. and Khan, W.A. (2020a), "Cattaneo-Christov double diffusions (CCDD) in entropy optimized magnetized second grade nanofluid with variable thermal conductivity and mass diffusivity", J. Mater. Res. Technol., 9(6), 13977-13987. https://doi.org/10.1016/j.jmrt.2020.09.101
- Chu, Y.M., Hashmi, M.S., Khan, N., Khan, S.U., Khan, M.I., Kadry, S. and Abdelmalek, Z. (2020b), "Thermophoretic particles deposition features in thermally developed flow of Maxwell fluid between two infinite stretched disks", J. Mater. Res. Technol., 9(6), 12889-12898. https://doi.org/10.1016/j.jmrt.2020.09.011
- Chung, J.D., Ramzan, M., Gul, H., Gul, N., Kadry, S. and Chu, Y.M. (2021), "Partially ionized hybrid nanofluid flow with thermal stratification", J. Mater. Res. Technol., 11, 1457-1468. https://doi.org/10.1016/j.jmrt.2021.01.095
- Crane, L.J. (1970), "Flow past a stretching plate", J. Appl. Mathe. Phys., 21(4), 645-647. https://doi.org/10.1007/BF01587695
- Daba, M. and Devaraj, P. (2016), "Unsteady boundary layer flow of a Nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation", Thermo Phys. Aeromech., 23(3), 403-413. https://doi.org/10.1134/S0869864316030100
- Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
- Ferdows, M., Khan, M.S., Alam, M.M. and Afify, A.A. (2017), "MHD boundary layer flow and heat transfer characteristics of a nanofluid over a stretching sheet. Acta Universitatis Sapientiae", Mathematica, 9(1), 140-161. https://doi.org/10.1515/ausm.2017.0009
- Ge-JiLe, H., Javid, K., Khan, S.U., Raza, M., Khan, M.I. and Qayyum, S. (2021), "Double diffusive convection and Hall effect in creeping flow of viscous nanofluid through a convergent microchannel: a biotechnological applications", Comput. Methods Biomech. Biomed. Eng., 24(12), 1326-1343. https://doi.org/10.1080/10255842.2021.1888373
- Halim, N.A. and Noor, N.F.M. (2015), "Analytical solution for Maxwell nanofluid boundary layer flow over a stretching surface", AIP Conference Proceedings, Vol. 1682, No. 1, p. 020006. https://doi.org/10.1063/1.4932415
- Haq, F., Kadry, S., Chu, Y.M., Khan, M. and Khan, M.I. (2020), "Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy", J. Mater. Res. Technol., 9(5), 10468-10477. https://doi.org/10.1016/j.jmrt.2020.07.025
- Hayat, T., Muhammad, T., Alsaedi, A. and Alhuthali, M.S. (2015), "Magneto hydrodynamics three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation", J. Magnet. Magnet. Mater., 385, 222-229. https://doi.org/10.1016/j.jmmm.2015.02.046
- Hiemenz, K. (1911), "Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder", Dinglers Polytech. J., 326, 321-324. https://lib.ugent.be/catalog/rug01:001856944
- Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039
- Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
- Khan, U., Zaib, A., Waini, I., Ishak, A., Sherif, E.S.M., Xia, W.F. and Muhammad, N. (2022), "Impact of Smoluchowski temperature and Maxwell velocity slip conditions on axisymmetric rotated flow of hybrid nanofluid past a porous moving rotating disk", Nanomaterials, 12(2), 276. https://doi.org/10.3390/nano12020276
- Kumari, M. and Nath, G. (1999), "Flow and heat transfer in a stagnation-point flow over a stretching sheet with a magnetic field", Mech. Res. Commun., 26(4), 469-478. https://doi.org/10.1016/S0093-6413(99)00051-8
- Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms", Int. Commun. Heat Mass Transfer, 37(10), 421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015
- Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Thermal Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015
- Li, X., Dong, Z.Q., Wang, L.P., Niu, X.D., Yamaguchi, H., Li, D.C. and Yu, P. (2023), "A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows", Appl. Mathe. Modell., 117, 219-250. https://doi.org/10.1016/j.apm.2022.12.025
- Liao, S. (2012), Homotopy Analysis Method in Nonlinear Differential Equation, Higher Education Press, Beijing, China, pp. 153-165. https://doi.org/10.1007/978-3-642-25132-0
- Liu, W., Zhao, C., Zhou, Y. and Xu, X. (2022), "Modeling of Vapor-Liquid Equilibrium for Electrolyte Solutions Based on COSMO-RS Interaction", J. Chem., 1-13. https://doi.org/10.1155/2022/9070055
- Mahapatra, T.R. and Gupta, A.S. (2001), "Magneto hydrodynamics stagnation-point flow towards a stretching sheet", Acta Mechanics, 152(1-4), 191-196. https://doi.org/10.1007/BF01176953
- Mahmoud, M.A. and Waheed, S.E. (2012), "MHD stagnation point flow of a micro polar fluid towards a moving surface with radiation", Meccanica, 47(5), 1119-1130. https://doi.org/10.1007/s11012-011-9498-x
- Mahmood, K., Sajid, M., Ali, N. and Javed, T. (2017), "MHD mixed convection stagnation point flow of a viscous fluid over a lubricated vertical surface", Industr. Lubricat. Tribol., 69(4), 527-535. https://doi.org/10.1108/ILT-02-2016-0025
- Makinde, O.D. and Aziz, A. (2011), "Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition", Int. J. Thermal Sci., 50(7), 1326-1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019
- Malik, M.Y., Hussain, A. and Nadeem, S. (2013), "Boundary layer flow of an Eyring-Powell model fluid due to a stretching cylinder with variable viscosity", Scientia Iranica, 20(2), 313-321. https://doi.org/10.1016/j.scient.2013.02.028
- Maouedj, R., Menni, Y., Inc, M., Chu, Y.M., Ameur, H. and Lorenzini, G. (2021), "Simulating the Turbulent Hydrothermal Behavior of Oil/MWCNT Nano fluid in a Solar Channel Heat Exchanger Equipped with Vortex Generators", Comput. Model. Eng. Sci., 126(3), 855-889. https://doi.org/10.32604/cmes.2021.014524
- Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
- Muhammad, A. and Shahzad, A. (2011), "Radiation effects on MHD boundary layer stagnation point flow towards a heated shrinking sheet", World Appl. Sci. J., 13(7), 1748-1756. https://doi.org/10.1080/00986445.2011.631202
- Mustafaa, M., Hayat, T. and Obaidat, S. (2013), "Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions", Int. J. Numer. Methods Heat Fluid Flow, 23(6), 945-959. https://doi.org/10.1108/HFF-09-2011-0179
- Na, T.Y. (Ed.). (1980), Computational Methods in Engineering Boundary Value Problems, Academic Press. ISBN: 978-0-12-512650-2
- Prasher, R., Song, D., Wang, J. and Phelan, P. (2006), "Measurements of nanofluid viscosity and its implications for thermal applications", Appl. Phys. Lett., 89(13), 133108. https://doi.org/10.1063/1.2356113
- Qu, M., Liang, T., Hou, J., Liu, Z., Yang, E. and Liu, X. (2022), "Laboratory study and field application of amphiphilic molybdenum disulfide nanosheets for enhanced oil recovery", J. Petrol. Sci. Eng., 208, 109695. https://doi.org/10.1016/j.petrol.2021.109695
- Ramesh, K., Khan, S.U., Jameel, M., Khan, M.I., Chu, Y.M. and Kadry, S. (2020), "Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy", Surfaces Interf., 21, 100749. https://doi.org/10.1016/j.surfin.2020.100749
- Rashidi, M.M., Rostami, B., Freidoonimehr, N. and Abbasbandy, S. (2014), "Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects", Ain Shams Eng. J., 5(3), 901-912. https://doi.org/10.1016/j.asej.2014.02.007
- Sajid, M., Mahmood, K. and Abbas, Z. (2012), "Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface", Chinese Phys. Lett., 29(2), 024702. https://doi.org/10.1088/0256-307X/29/2/024702
- Sajid, M., Javed, T., Abbas, Z. and Ali, N. (2013), "Stagnationpoint flow of a viscoelastic fluid over a lubricated surface", Int. J. Nonlinear Sci. Numer. Simul., 14(5), 285-290. https://doi.org/10.1515/ijnsns-2012-0046
- Sajid, M., Ahmad, M., Ahmad, I., Taj, M. and Abbasi, A. (2015a), "Axisymmetric stagnation-point flow of a third-grade fluid over a lubricated surface", Adv. Mech. Eng., 7(8), 1-8. https://doi.org/10.1177/1687814015591735
- Sajid, M., Arshad, A., Javed, T. and Abbas, Z. (2015b), "Stagnation point flow of Walters-B fluid using hybrid homotopy analysis method", Arab. J. Sci. Eng., 40(11), 3313-3319. https://doi.org/10.1007/s13369-015-1781-z
- Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
- Santra, B., Dandapat, B.S. and Andersson, H.I. (2007), "Axisymmetric stagnation-point flow over a lubricated surface", Acta Mech., 194(1-4), 1-10. https://doi.org/10.1007/s00707-007-0484-2
- Sharma, P.R. and Singh, G. (2009), "Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet", J. Appl. Fluid Mech., 2(1), 13-21. https://www.sid.ir/en/journal/ViewPaper.aspx?id=125718 https://doi.org/10.36884/jafm.2.01.11851
- Sheikholeslami, M. (2018), "CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion", J. Molecul. Liquids, 249, 921-929. https://doi.org/10.1016/j.molliq.2017.11.118
- Sheikholeslami, M., Shehzad, S.A. and Li, Z. (2018), "Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces", Int. J. Heat Mass Transfer, 125, 375-386. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.076
- Waqas, M., Khan, M.I., Asghar, Z., Kadry, S., Chu, Y.M. and Khan, W.A. (2020), "Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier's and Fick's concept", J. Mater. Res. Technol., 9(5), 11080-11086. https://doi.org/10.1016/j.jmrt.2020.07.068
- White, F.M. and Corfield, I. (2006), Viscous fluid flow, McGraw-Hill, New York, USA, Vol. 3, pp. 433-434. ISBN 0-07-069712-4
- Xiang, J., Deng, L., Zhou, C., Zhao, H., Huang, J. and Tao, S. (2022), "Heat Transfer Performance and Structural Optimization of a Novel Micro-channel Heat Sink", Chinese J. Mech. Eng., 35(1). https://doi.org/10.1186/s10033-022-00704-5