과제정보
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/357/44.
참고문헌
- Al-Baiyat, I.A. and Heinze, L. (2012.),"Implementing artificial neural networks and support vector machines in stuck pipe prediction", Proceedings of the SPE Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 10-12, December. https://doi.org/10.2118/163370-ms.
- Chen, Y., Zhong, K., Zhang, J., Sun, Q. andZhao, X.L. (2016), "LSTM networks for mobile human activity recognition", Proceedings of the International Conference on Artificial Intelligence: Technologies and Applications. ICAITA, https://doi.org/10.2991/icaita-16.2016.13
- Dahab, A.S., Abdulaziz, A.M., Manhalawi, A., Abbas, A.K. and AL-Husseini, N. (2020), "Managing wellbore instability through geomechanical modeling and wellbore stability analysis", Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium (ARMA), Golden, Colorado, USA, 28 June-1 July, Paper No. ARMA 20-1378.
- Gjonnes, M., Cruz, A.M., Horsrud, P. and Holt, R.M. (1998), "Leak-off tests for horizontal stress determination", J. Petroleum Sci. Eng., 20(1-2), 63-71. https://doi.org/10.1016/s0920-4105(97)00053-3.
- Graves, A. (2012). "Long short-term memory. In Supervised sequence labelling with recurrent neural networks", Springer-Verlag GmbH Berlin Heidelberg, 37-45. https://doi.org/10.1007/978-3-642-24797-2.
- Hayavi, M.T. and Abdideh, M. (2016), "Estimation of insitu horizontal stresses using the linear poroelastic model and minifrac test results in tectonically active area", Russian J. Earth Sci., 16, 1-9. https://doi.org/10.2205/2016ES000576.
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput., 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
- Haimson, B. and Cornet, F. (2003), "ISRM suggested methods for rock stress estimation-Part 3: Hydraulic fracturing (HF) and/or hydraulic testing of preexisting fractures (HTPF)", Int. J. Rock Mech. Min. Sci., 40(7-8), 1011-1020. https://doi.org/10.1016/j.ijrmms.2003.08.002.
- Han, W., Jiang, Y., Zhang, X., Koga, D. and Gao, Y. (2021), "Quantitative assessment on the reinforcing behavior of the CFRP-PCM method on tunnel linings", Geomech. Eng., 25(2), 123-134. https://doi.org/10.12989/gae.2021.25.2.123.
- Huang, Y., Huang, J., Zhang, W. and Liu, X. (2023), "Experimental and numerical study of hooked-end steel fiber-reinforced concrete based on the meso- and macro-models", Compos. Struct., 116750. https://doi.org/10.1016/j.compstruct.2023.116750.
- Hong, Y., Yao, M. and Wang, L. (2023), "A multi-axial bounding surface p-y model with application in analyzing pile responses under multi-directional lateral cycling", Comput. Geotech., 157, 105301. https://doi.org/10.1016/j.compgeo.2023.105301.
- Jin, J., Zhang, X., Liu, X., Li, Y. and Li, S. (2022), "Study on critical slowdown characteristics and early warning model of damage evolution of sandstone under freeze-thaw cycles", Front. Earth Sci.. https://doi.org/10.3389/feart.2022.1006642.
- Li, G., Lorwongngam, A. and Roegiers, J. (2009), "Critical review of leak-off test as a practice for determination of in-situ stresses", Proceedings of the 43rd US Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium, Asheville, NC June 28th - July 1, Paper No. ARMA09-003.
- Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-454. https://doi.org/10.12989/gae.2021.25.6.439.
- Liu, H., Chen, Z., Liu, Y., Chen, Y., Du, Y. and Zhou, F. (2023a), "Interfacial debonding detection for CFST structures using an ultrasonic phased array: Application to the Shenzhen SEG building", Mech. Syst. Signal Pr., 192, 110214. https://doi.org/10.1016/j.ymssp.2023.110214.
- Li, X., Du, C., Wang, X. and Zhang, J. (2023), "Quantitative determination of high-order crack fabric in rock plane", Rock Mech. Rock Eng., https://doi.org/10.1007/s00603-023-03319-x.
- Li, R., Wu, X., Tian, H., Yu, N. and Wang, C. (2022b), "Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic Inversion", IEEE T. Geosci. Remote, 60. https://doi.org/10.1109/TGRS.2022.3208465.
- Li, X. and Sun, Y. (2020), "Stock intelligent investment strategy based on support vector machine parameter optimization algorithm", Neural Comput. Appl., 32(6), 1765-1775. https://doi.org/10.1007/s00521-019-04566-2.
- Li, R., Zhang, H., Chen, Z., Yu, N., Kong, W., Li, T. and Liu, Y. (2022a), "Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum", Measurement, 192, 110886. https://doi.org/10.1016/j.measurement.2022.110886.
- Liu, H., Yue, Y., Liu, C., Spencer, B.F. and Cui, J. (2023b), "Automatic recognition and localization of underground pipelines in GPR B-scans using a deep learning model", Tunn. Undergr. Sp. Tech., 134, 104861. https://doi.org/10.1016/j.tust.2022.104861
- Mohammed, H.Q,, Abbas, A.K. and Dahm, H.H. (2018), "Wellbore instability analysis for Nahr Umr formation in Southern Iraq", Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium (ARMA), Seattle, Washington, June 17-20, Paper No. ARMA 18-916.
- Mahmoodzadeh, A., Rashidi, S., Mohammed, A., Hama Ali, H. and Ibrahim, H. (2022), "Machine learning approaches to enable resource forecasting process of road tunnels construction", Commun. Eng. Comput. Sci., https://conferences.cihanuniversity.edu.iq/index.php/COCOS/22/paper/view/718.
- Najibi, A.R., Ghafoori, M., Lashkaripour, G.R. and Asef, M.R. (2017), "Reservoir geomechanical modeling: Insitu stress, pore pressure, and mud design", J. Petroleum Sci. Eng., 151, 31-39. https://doi.org/10.1016/j.petrol.2017.01.045
- Pan, Q., Chen, Z., Wu, Y., Dias, D. and Oreste, P. (2021), "Probabilistic tunnel face stability analysis: A comparison between LEM and LAM", Geomech. Eng., 24(4), 399-406. https://doi.org/10.12989/gae.2021.24.4.399.
- Peng, J., Xu, C., Dai, B., Sun, L., Feng, J. and Huang, Q. (2022), "Numerical investigation of brittleness effect on strength and microcracking behavior of crystalline rock", Int. J. Geomech., 22(10), 4022178. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002529.
- Ren, C., Yu, J., Liu, S., Yao, W., Zhu, Y. and Liu, X. (2022a), "A plastic strain-induced damage model of porous rock suitable for different stress paths", Rock Mech. Rock Eng., 55(4), 1887-1906. https://doi.org/10.1007/s00603-022-02775-1.
- Ren, Y., Jiang, H., Ji, N. and Yu, H. (2022b), "TBSM: A traffic burst-sensitive model for short-term prediction under special events", Knowledge-Based Systems, 240, 108120. https://doi.org/10.1016/j.knosys.2022.108120
- Song, L. and Hareland, G. (2012), "Minimum horizontal stress profile from logging data for Montney Formation of North East British Columbia", Proceedings of the SPE Canadian Unconventional Resources Conference, https://doi.org/10.2118/162233-ms
- Salman, A.G., Heryadi, Y., Abdurahman, E. and Suparta, W. (2018), "Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting", Procedia Comput. Sci., 135, 89-98. https://doi.org/10.1016/j.procs.2018.08.153.
- Wu, Z., Xu, J., Li, Y. and Wang, S. (2022), "Disturbed state concept-based model for the uniaxial strain-softening behavior of fiber-reinforced soil", Int. J. Geomech., 22(7), 4022092. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002415.
- Xiao, X., Zhang, Q., Zheng, J. and Li, Z. (2023), "Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading", Eng. Struct., 282, 115780. https://doi.org/10.1016/j.engstruct.2023.115780.
- Xia, Y., Shi, M., Zhang, C., Wang, C., Sang, X., Liu, R. and Fang, H. (2022), "Analysis of flexural failure mechanism of ultraviolet cured-in-place-pipe materials for buried pipelines rehabilitation based on curing temperature monitoring", Eng. Fai. Anal., 142, 106763. https://doi.org/10.1016/j.engfailanal.2022.106763.
- Xiang, G., Ying, D., Gao, C. and Yuan, L. (2021), "Application of artificial neural network for prediction of flow ability of soft soil subjected to vibrations", Geomech. Eng., 25(5), 395-403. https://doi.org/10.12989/gae.2021.25.5.395.
- Xiao, D., Hu, Y., Wang, Y., Deng, H., Zhang, J., Tang, B. and Li, G. (2022), "Wellbore cooling and heat energy utilization method for deep shale gas horizontal well drilling", Appl. Therm. Eng., 213, 118684. https://doi.org/10.1016/j.applthermaleng.2022.118684
- Yang, J., Fu, LY., Zhang, Y., and Han, T., (2022a). "Temperature-and Pressure-Dependent Pore Microstructures Using Static and Dynamic Moduli and Their Correlation", Rock Mech Rock Eng., 55, 4073-4092. https://doi.org/10.1007/s00603-022-02829-4
- Yang, J., Fu, L., Fu, B., Deng, W. and Han, T. (2022b), "Third-order pade thermoelastic constants of solid rocks", J. Geophys. Research: Solid Earth, 127(9), e2022J-e24517J. https://doi.org/10.1029/2022JB024517.
- Yu, J., Zhu, Y., Yao, W., Liu, X., Ren, C., Cai, Y. and Tang, X. (2021), "Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures", Measurement, 182, 109777. https://doi.org/10.1016/j.measurement.2021.109777.
- Zhang, J., Zhu, Y., Zhang, X., Ye, M. and Yang, J. (2018), "Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas", J. Hydrol., 561, 918-929. https://doi.org/10.1016/j.jhydrol.2018.04.065.
- Zhao, B., Wang, G., Wu, B. and Kong, X. (2023), "A study on mechanical properties and permeability of steam-cured mortar with iron-copper tailings", Constr. Build. Mater., 383, 131372. https://doi.org/10.1016/j.conbuildmat.2023.131372.
- Zhang, W., Kang, S., Huang, Y. and Liu, X. (2023), "Behavior of reinforced concrete beams without stirrups and strengthened with basalt fiber-reinforced polymer sheets", J. Compos. Constr., 27(2), 4023007. https://doi.org/10.1061/JCCOF2.CCENG-4082.
- Zhang, C. and Abedini, M. (2022), "Application of Lagrangian approach to generate P-I diagrams for RC columns exposed to extreme dynamic loading", Adv. Concrete Constr., 14(3), 153-167. https://doi.org/10.12989/acc.2022.14.3.153.
- Zhang, X., Ma, F., Dai, Z., Wang, J., Chen, L., Ling, H. and Soltanian, M.R. (2022a), "Radionuclide transport in multi-scale fractured rocks: A review", J. Hazard. Mater., 424, 127550. https://doi.org/10.1016/j.jhazmat.2021.127550.
- Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022b), "Numerical dtudy on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831.
- Zhang, X., Wang, Z., Reimus, P., Ma, F., Soltanian, M.R., Xing, B. and Dai, Z. (2022c), "Plutonium reactive transport in fractured granite: Multi-species experiments and simulations", Water Res., 224, 119068. https://doi.org/10.1016/j.watres.2022.119068.
- Zhang, Q., Ge, L., Hensley, S., Isabel Metternicht, G., Liu, C. and Zhang, R. (2022d), "PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data", ISPRS J. Photogrammetry Remote Sens., 186, 123-139. https://doi.org/10.1016/j.isprsjprs.2022.02.008.
- Zhan, C., Dai, Z., Soltanian, M.R. and de Barros, F.P.J. (2022), "Data-worth analysis for heterogeneous subsurface structure identification with a stochastic deep learning framework", Water Resour. Res., https://doi.org/10.1029/2022WR033241.
- Zhan, C., Dai, Z., Yang, Z., Zhang, X., Ma, Z., Thanh, H.V. and Soltanian, M.R. (2023), "Subsurface sedimentary structure identification using deep learning: A review", Earth-Sci. Rev., 239, 104370. https://doi.org/10.1016/j.earscirev.2023.104370.