DOI QR코드

DOI QR Code

LSTM algorithm to determine the state of minimum horizontal stress during well logging operation

  • Arsalan Mahmoodzadeh (Department of Civil Engineering, University of Halabja) ;
  • Seyed Mehdi Seyed Alizadeh (Petroleum Engineering Department, Australian University) ;
  • Adil Hussein Mohammed (Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil) ;
  • Ahmed Babeker Elhag (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Hawkar Hashim Ibrahim (Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil) ;
  • Shima Rashidi (Department of Computer Science, College of Science and Technology, University of Human Development)
  • Received : 2022.10.16
  • Accepted : 2023.05.10
  • Published : 2023.07.10

Abstract

Knowledge of minimum horizontal stress (Shmin) is a significant step in determining full stress tensor. It provides crucial information for the production of sand, hydraulic fracturing, determination of safe mud weight window, reservoir production behavior, and wellbore stability. Calculating the Shmin using indirect methods has been proved to be awkward because a lot of data are required in all of these models. Also, direct techniques such as hydraulic fracturing are costly and time-consuming. To figure these problems out, this work aims to apply the long-short-term memory (LSTM) algorithm to Shmin time-series prediction. 13956 datasets obtained from an oil well logging operation were applied in the models. 80% of the data were used for training, and 20% of the data were used for testing. In order to achieve the maximum accuracy of the LSTM model, its hyper-parameters were optimized significantly. Through different statistical indices, the LSTM model's performance was compared with with other machine learning methods. Finally, the optimized LSTM model was recommended for Shmin prediction in the well logging operation.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/357/44.

References

  1. Al-Baiyat, I.A. and Heinze, L. (2012.),"Implementing artificial neural networks and support vector machines in stuck pipe prediction", Proceedings of the SPE Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 10-12, December. https://doi.org/10.2118/163370-ms. 
  2. Chen, Y., Zhong, K., Zhang, J., Sun, Q. andZhao, X.L. (2016), "LSTM networks for mobile human activity recognition", Proceedings of the International Conference on Artificial Intelligence: Technologies and Applications. ICAITA, https://doi.org/10.2991/icaita-16.2016.13 
  3. Dahab, A.S., Abdulaziz, A.M., Manhalawi, A., Abbas, A.K. and AL-Husseini, N. (2020), "Managing wellbore instability through geomechanical modeling and wellbore stability analysis", Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium (ARMA), Golden, Colorado, USA, 28 June-1 July, Paper No. ARMA 20-1378. 
  4. Gjonnes, M., Cruz, A.M., Horsrud, P. and Holt, R.M. (1998), "Leak-off tests for horizontal stress determination", J. Petroleum Sci. Eng., 20(1-2), 63-71. https://doi.org/10.1016/s0920-4105(97)00053-3. 
  5. Graves, A. (2012). "Long short-term memory. In Supervised sequence labelling with recurrent neural networks", Springer-Verlag GmbH Berlin Heidelberg, 37-45. https://doi.org/10.1007/978-3-642-24797-2. 
  6. Hayavi, M.T. and Abdideh, M. (2016), "Estimation of insitu horizontal stresses using the linear poroelastic model and minifrac test results in tectonically active area", Russian J. Earth Sci., 16, 1-9. https://doi.org/10.2205/2016ES000576. 
  7. Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput., 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735. 
  8. Haimson, B. and Cornet, F. (2003), "ISRM suggested methods for rock stress estimation-Part 3: Hydraulic fracturing (HF) and/or hydraulic testing of preexisting fractures (HTPF)", Int. J. Rock Mech. Min. Sci., 40(7-8), 1011-1020. https://doi.org/10.1016/j.ijrmms.2003.08.002. 
  9. Han, W., Jiang, Y., Zhang, X., Koga, D. and Gao, Y. (2021), "Quantitative assessment on the reinforcing behavior of the CFRP-PCM method on tunnel linings", Geomech. Eng., 25(2), 123-134. https://doi.org/10.12989/gae.2021.25.2.123. 
  10. Huang, Y., Huang, J., Zhang, W. and Liu, X. (2023), "Experimental and numerical study of hooked-end steel fiber-reinforced concrete based on the meso- and macro-models", Compos. Struct., 116750. https://doi.org/10.1016/j.compstruct.2023.116750. 
  11. Hong, Y., Yao, M. and Wang, L. (2023), "A multi-axial bounding surface p-y model with application in analyzing pile responses under multi-directional lateral cycling", Comput. Geotech., 157, 105301. https://doi.org/10.1016/j.compgeo.2023.105301. 
  12. Jin, J., Zhang, X., Liu, X., Li, Y. and Li, S. (2022), "Study on critical slowdown characteristics and early warning model of damage evolution of sandstone under freeze-thaw cycles", Front. Earth Sci.. https://doi.org/10.3389/feart.2022.1006642. 
  13. Li, G., Lorwongngam, A. and Roegiers, J. (2009), "Critical review of leak-off test as a practice for determination of in-situ stresses", Proceedings of the 43rd US Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium, Asheville, NC June 28th - July 1, Paper No. ARMA09-003. 
  14. Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-454. https://doi.org/10.12989/gae.2021.25.6.439. 
  15. Liu, H., Chen, Z., Liu, Y., Chen, Y., Du, Y. and Zhou, F. (2023a), "Interfacial debonding detection for CFST structures using an ultrasonic phased array: Application to the Shenzhen SEG building", Mech. Syst. Signal Pr., 192, 110214. https://doi.org/10.1016/j.ymssp.2023.110214. 
  16. Li, X., Du, C., Wang, X. and Zhang, J. (2023), "Quantitative determination of high-order crack fabric in rock plane", Rock Mech. Rock Eng., https://doi.org/10.1007/s00603-023-03319-x. 
  17. Li, R., Wu, X., Tian, H., Yu, N. and Wang, C. (2022b), "Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic Inversion", IEEE T. Geosci. Remote, 60. https://doi.org/10.1109/TGRS.2022.3208465. 
  18. Li, X. and Sun, Y. (2020), "Stock intelligent investment strategy based on support vector machine parameter optimization algorithm", Neural Comput. Appl., 32(6), 1765-1775. https://doi.org/10.1007/s00521-019-04566-2.
  19. Li, R., Zhang, H., Chen, Z., Yu, N., Kong, W., Li, T. and Liu, Y. (2022a), "Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum", Measurement, 192, 110886. https://doi.org/10.1016/j.measurement.2022.110886. 
  20. Liu, H., Yue, Y., Liu, C., Spencer, B.F. and Cui, J. (2023b), "Automatic recognition and localization of underground pipelines in GPR B-scans using a deep learning model", Tunn. Undergr. Sp. Tech., 134, 104861. https://doi.org/10.1016/j.tust.2022.104861 
  21. Mohammed, H.Q,, Abbas, A.K. and Dahm, H.H. (2018), "Wellbore instability analysis for Nahr Umr formation in Southern Iraq", Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium (ARMA), Seattle, Washington, June 17-20, Paper No. ARMA 18-916. 
  22. Mahmoodzadeh, A., Rashidi, S., Mohammed, A., Hama Ali, H. and Ibrahim, H. (2022), "Machine learning approaches to enable resource forecasting process of road tunnels construction", Commun. Eng. Comput. Sci., https://conferences.cihanuniversity.edu.iq/index.php/COCOS/22/paper/view/718. 
  23. Najibi, A.R., Ghafoori, M., Lashkaripour, G.R. and Asef, M.R. (2017), "Reservoir geomechanical modeling: Insitu stress, pore pressure, and mud design", J. Petroleum Sci. Eng., 151, 31-39. https://doi.org/10.1016/j.petrol.2017.01.045 
  24. Pan, Q., Chen, Z., Wu, Y., Dias, D. and Oreste, P. (2021), "Probabilistic tunnel face stability analysis: A comparison between LEM and LAM", Geomech. Eng., 24(4), 399-406. https://doi.org/10.12989/gae.2021.24.4.399. 
  25. Peng, J., Xu, C., Dai, B., Sun, L., Feng, J. and Huang, Q. (2022), "Numerical investigation of brittleness effect on strength and microcracking behavior of crystalline rock", Int. J. Geomech., 22(10), 4022178. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002529. 
  26. Ren, C., Yu, J., Liu, S., Yao, W., Zhu, Y. and Liu, X. (2022a), "A plastic strain-induced damage model of porous rock suitable for different stress paths", Rock Mech. Rock Eng., 55(4), 1887-1906. https://doi.org/10.1007/s00603-022-02775-1. 
  27. Ren, Y., Jiang, H., Ji, N. and Yu, H. (2022b), "TBSM: A traffic burst-sensitive model for short-term prediction under special events", Knowledge-Based Systems, 240, 108120. https://doi.org/10.1016/j.knosys.2022.108120 
  28. Song, L. and Hareland, G. (2012), "Minimum horizontal stress profile from logging data for Montney Formation of North East British Columbia", Proceedings of the SPE Canadian Unconventional Resources Conference, https://doi.org/10.2118/162233-ms 
  29. Salman, A.G., Heryadi, Y., Abdurahman, E. and Suparta, W. (2018), "Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting", Procedia Comput. Sci., 135, 89-98. https://doi.org/10.1016/j.procs.2018.08.153. 
  30. Wu, Z., Xu, J., Li, Y. and Wang, S. (2022), "Disturbed state concept-based model for the uniaxial strain-softening behavior of fiber-reinforced soil", Int. J. Geomech., 22(7), 4022092. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002415. 
  31. Xiao, X., Zhang, Q., Zheng, J. and Li, Z. (2023), "Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading", Eng. Struct., 282, 115780. https://doi.org/10.1016/j.engstruct.2023.115780. 
  32. Xia, Y., Shi, M., Zhang, C., Wang, C., Sang, X., Liu, R. and Fang, H. (2022), "Analysis of flexural failure mechanism of ultraviolet cured-in-place-pipe materials for buried pipelines rehabilitation based on curing temperature monitoring", Eng. Fai. Anal., 142, 106763. https://doi.org/10.1016/j.engfailanal.2022.106763. 
  33. Xiang, G., Ying, D., Gao, C. and Yuan, L. (2021), "Application of artificial neural network for prediction of flow ability of soft soil subjected to vibrations", Geomech. Eng., 25(5), 395-403. https://doi.org/10.12989/gae.2021.25.5.395. 
  34. Xiao, D., Hu, Y., Wang, Y., Deng, H., Zhang, J., Tang, B. and Li, G. (2022), "Wellbore cooling and heat energy utilization method for deep shale gas horizontal well drilling", Appl. Therm. Eng., 213, 118684. https://doi.org/10.1016/j.applthermaleng.2022.118684 
  35. Yang, J., Fu, LY., Zhang, Y., and Han, T., (2022a). "Temperature-and Pressure-Dependent Pore Microstructures Using Static and Dynamic Moduli and Their Correlation", Rock Mech Rock Eng., 55, 4073-4092. https://doi.org/10.1007/s00603-022-02829-4 
  36. Yang, J., Fu, L., Fu, B., Deng, W. and Han, T. (2022b), "Third-order pade thermoelastic constants of solid rocks", J. Geophys. Research: Solid Earth, 127(9), e2022J-e24517J. https://doi.org/10.1029/2022JB024517. 
  37. Yu, J., Zhu, Y., Yao, W., Liu, X., Ren, C., Cai, Y. and Tang, X. (2021), "Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures", Measurement, 182, 109777. https://doi.org/10.1016/j.measurement.2021.109777. 
  38. Zhang, J., Zhu, Y., Zhang, X., Ye, M. and Yang, J. (2018), "Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas", J. Hydrol., 561, 918-929. https://doi.org/10.1016/j.jhydrol.2018.04.065. 
  39. Zhao, B., Wang, G., Wu, B. and Kong, X. (2023), "A study on mechanical properties and permeability of steam-cured mortar with iron-copper tailings", Constr. Build. Mater., 383, 131372. https://doi.org/10.1016/j.conbuildmat.2023.131372. 
  40. Zhang, W., Kang, S., Huang, Y. and Liu, X. (2023), "Behavior of reinforced concrete beams without stirrups and strengthened with basalt fiber-reinforced polymer sheets", J. Compos. Constr., 27(2), 4023007. https://doi.org/10.1061/JCCOF2.CCENG-4082. 
  41. Zhang, C. and Abedini, M. (2022), "Application of Lagrangian approach to generate P-I diagrams for RC columns exposed to extreme dynamic loading", Adv. Concrete Constr., 14(3), 153-167. https://doi.org/10.12989/acc.2022.14.3.153. 
  42. Zhang, X., Ma, F., Dai, Z., Wang, J., Chen, L., Ling, H. and Soltanian, M.R. (2022a), "Radionuclide transport in multi-scale fractured rocks: A review", J. Hazard. Mater., 424, 127550. https://doi.org/10.1016/j.jhazmat.2021.127550. 
  43. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022b), "Numerical dtudy on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831. 
  44. Zhang, X., Wang, Z., Reimus, P., Ma, F., Soltanian, M.R., Xing, B. and Dai, Z. (2022c), "Plutonium reactive transport in fractured granite: Multi-species experiments and simulations", Water Res., 224, 119068. https://doi.org/10.1016/j.watres.2022.119068. 
  45. Zhang, Q., Ge, L., Hensley, S., Isabel Metternicht, G., Liu, C. and Zhang, R. (2022d), "PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data", ISPRS J. Photogrammetry Remote Sens., 186, 123-139. https://doi.org/10.1016/j.isprsjprs.2022.02.008. 
  46. Zhan, C., Dai, Z., Soltanian, M.R. and de Barros, F.P.J. (2022), "Data-worth analysis for heterogeneous subsurface structure identification with a stochastic deep learning framework", Water Resour. Res., https://doi.org/10.1029/2022WR033241. 
  47. Zhan, C., Dai, Z., Yang, Z., Zhang, X., Ma, Z., Thanh, H.V. and Soltanian, M.R. (2023), "Subsurface sedimentary structure identification using deep learning: A review", Earth-Sci. Rev., 239, 104370. https://doi.org/10.1016/j.earscirev.2023.104370.