DOI QR코드

DOI QR Code

Accuracy assessment of real-time hybrid testing for seismic control of an offshore wind turbine supporting structure with a TMD

  • Ging-Long Lin (Department of Construction Engineering, National Kaohsiung University of Science and Technology) ;
  • Lyan-Ywan Lu (Department of Civil Engineering, National Cheng Kung University) ;
  • Kai-Ting Lei (Department of Civil Engineering, National Cheng Kung University) ;
  • Shih-Wei Yeh (National Center for Research on Earthquake Engineering) ;
  • Kuang-Yen Liu (Department of Civil Engineering, National Cheng Kung University)
  • Received : 2022.05.08
  • Accepted : 2023.06.13
  • Published : 2023.06.25

Abstract

In this study, the accuracy of a real-time hybrid test (RTHT) employed for a performance test of a tuned mass damper (TMD) on an offshore wind turbine (OWT) with a complicated jacket-type supporting structure is quantified and evaluated by comparing the RTHT results with the experimental data obtained from a shaking table test (STT), in which a 1/25-scale model for a typical 5-MW OWT controlled by a TMD was tested. In the RTHT, the jacket-type OWT structure was modelled using both multiple-DOF (MDOF) and single-DOF (SDOF) numerical models. When compared with the STT test data, the test results of the RTHT show that while the SDOF model, which requires less control computational time, is able to well predict the peak responses of the nacelle and TMD only, the MDOF model is able to effectively predict both the peak and over-all time-history responses at multiple critical locations of an OWT structure. This also indicates that, depending on the type of structural responses considered, an RTHT with either an SDOF or a MDOF model may be a promising alternative to the STT to assess the effectiveness of a TMD for seismic mitigation in an OWT context.

Keywords

Acknowledgement

The authors thank the Tainan laboratory at the National Center for Research on Earthquake Engineering (NCREE, Taiwan) for technical and financial support for the experiments. The authors are also grateful to Prof. ChiChang Lin (the Department of Civil Engineering, National Chung Hsing University, Taiwan) for the valuable information related to the design and fabrication of the TMD system.

References

  1. Asai, T., Chang, C.M. and Spencer Jr., B.F. (2015), "Real-time hybrid simulation of a smart base-isolated building", J. Eng. Mech., 141(3), 1943-7889. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000844 
  2. Bargi, K., Dezvareh, R. and Mousavi, S.A. (2016), "Contribution of tuned liquid column gas dampers to the performance of offshore wind turbines under wind, wave, and seismic excitations", Earthq. Eng. Eng. Vib., 15, 551-561. https://doi.org/10.1007/s11803-016-0343-z 
  3. Calabrese, A., Strano, S. and Terzo, M. (2015), "Real-time hybrid simulations vs shaking table tests: Case study of a fibre-reinforced bearings isolated building under seismic loading", Struct. Control. Health. Monitor., 22(3), 535-556. https://doi.org/10.1002/stc.1687 
  4. Carrion, J.E. and Spencer Jr., B.F. (2008), "Real-time hybrid testing using model-based delay compensation", Smart Struct. Syst., Int. J., 4(6), 809-828. https://doi.org/10.12989/sss.2008.4.6.809 
  5. Chae, Y., Park, M., Kim, C.Y. and Park, Y.S. (2017), "Experimental study on the rate-dependency of reinforced concrete structures using slow and real-time hybrid simulations", Eng. Struct., 132, 648-658. https://doi.org/10.1016/j.engstruct.2016.11.065 
  6. Chang, S.Y., Wu, T.H., Tran, N.C. and Yang, Y.S. (2017), "Applications of a family of unconditionally stable, dissipative, explicit methods to pseudo dynamic tests", Experim. Techniq., 41(1), 19-36. https://doi.org/10.1007/s40799-016-0151-4 
  7. Chen, J. and Georgakis, C.T. (2013), "Tuned rolling-ball dampers for vibration control in wind turbines", J. Sound Vib., 332(21), 5271-5282. https://doi.org/10.1016/j.jsv.2013.05.019 
  8. Chen, P.C., Tsai, K.C. and Lin, P.Y. (2014), "Real-time hybrid testing of a smart base isolation system", Earthq. Eng. Struct. Dyn., 43(1), 139-158. https://doi.org/10.1002/eqe.2341 
  9. Chen, P.C., Chang, C.M., Spencer Jr., B.F. and Tsai, K.C. (2015), "Adaptive model-based tracking control for real-time hybrid simulation", Bull. Earthq. Eng., 13, 1633-1653. https://doi.org/10.1007/s10518-014-9681-2 
  10. Chen, P.C., Hsu, S.C., Zhong, Y.J. and Wang, S.J. (2019), "Realtime hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. https://doi.org/10.12989/sss.2019.23.1.091 
  11. Chen, P.C., Dong, M.W., Chen, P.C. and Nakata, N. (2020), "Stability analysis and verification of real-time hybrid simulation using a shake table for building mass damper systems", Front. Built Environ., 6, 109. https://doi.org/10.3389/fbuil.2020.00109 
  12. Chu, S.Y., Lu, L.Y., Yeh, S.W., Chia, P.Y. and Ning, W.C. (2018), "Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table", Struct. Control. Health. Monitor., 25(3), e2124. https://doi.org/10.1002/stc.2124 
  13. Colwell, S. and Basu, B. (2009), "Tuned liquid column dampers in offshore wind turbines for structural control", Eng. Struct., 31(2), 358-368. https://doi.org/10.1016/j.engstruct.2008.09.001 
  14. Connor, J.J. (2002), Introduction to Structural Motion Control., 1st edition, Prentice Hall. 
  15. Drazina, P.L. and Govindjee, S. (2017), "Hybrid simulation theory for a classical nonlinear dynamical system", J. Sound Vib., 3927, 240-259. https://doi.org/10.1016/j.jsv.2016.12.034 
  16. Facchinetti, A. and Bruni, S. (2012), "Hardware-in-the-loop hybrid simulation of pantograph-catenary interaction", J. Sound Vib., 331(12), 2783-2797. https://doi.org/10.1016/j.jsv.2012.01.033 
  17. Fu, B., Jiang, H. and Wu, T. (2019), "Experimental study of seismic response reduction effects of particle damper using substructure shake table testing method", Struct. Control Health Monitor., 26(2), e2295. https://doi.org/10.1002/stc.2295 
  18. Hakuno, H., Shidawara, M. and Hara, T. (1969), "Dynamic destructive test of a cantilever beam controlled by an analog-computer", Transact. Japan Soc. Engr., 171, 1-9. https://doi.org/10.2208/jscej1969.1969.171_1 
  19. Hayati, S. and Song, W. (2017), "An optimal discrete-time feedforward compensator for real-time hybrid simulation", Smart Struct. Syst., Int. J., 20(4), 483-498. https://doi.org/10.12989/sss.2017.20.4.483 
  20. He, T. and Jiang, N. (2019), "Substructure shake table test for equipment-adjacent structure-soil interaction based on the branch mode method", Struct. Des. Tall Spec. Build., 28(4), e1573. https://doi.org/10.1002/tal.1573 
  21. Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O 
  22. Horiuchi, T., Inoue, M. and Konno, T. (2000), "Development of a real-time hybrid experimental system using a shaking table", Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand. 
  23. Iemura, H., Igarashai, A. and Takahashi, Y. (1999), "Sub-structured hybrid techniques for actuator loading and shake table tests", Proceedings of the First International Conference on Advances in Structural Engineering and Mechanics, Seoul, South Korea. 
  24. Igarashi, A., Iemura, H. and Suwa, T. (2000), "Development of sub-structured shaking table test method", Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand. 
  25. Igarashi, A., Iemura, H., Tanaka, H. and Tsuruta, D. (2004), "Experimental simulation of coupled response of structural systems using the substructure hybrid shake table test method", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada. 
  26. Jin, X., Xie, S., He, J., Lin, Y., Wang, Y. and Wang, N. (2018), "Optimization of tuned mass damper parameters for floating wind turbines by using the artificial fish swarm algorithm", Ocean Eng., 167, 130-141. https://doi.org/10.1016/j.oceaneng.2018.08.031 
  27. Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), "Definition of a 5-MW reference wind turbine for offshore system development", National Renewable Energy Laboratory; NREL/TP-500-38060. 
  28. Ju, S.H. and Huang, Y.C. (2019), "Analyses of offshore wind turbine structures with soil-structure interaction under earthquakes", Ocean Eng., 187, 106190. https://doi.org/10.1016/j.oceaneng.2018.08.031 
  29. Ju, S.H., Su, F.C., Jiang, Y.T. and Chiu, T.C. (2019a), "Ultimate load design of jacket-type offshore wind turbines under tropical cyclones", Wind Energy, 22(5), 685-697. https://doi.org/10.1002/we.2315 
  30. Ju, S.H., Su, F.C., Ke, Y.P. and Xie, M.H. (2019b), "Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme", Renew. Energy, 136, 69-78. https://doi.org/10.1016/j.renene.2018.12.071 
  31. Khoo, H.H., Tsai, K.C., Tsai, C.Y., Tsai, C.Y. and Wang, K.J. (2016), "Bidirectional substructure pseudo-dynamic tests and analysis of a full-scale two-story buckling-restrained braced frame", Earthq. Eng. Struct. Dyn., 45(7), 1085-1107. https://doi.org/10.1002/eqe.2696 
  32. Lackner, M.A. and Rotea, M.A. (2011), "Passive structural control of offshore wind turbines", Wind Energy, 14(3), 373-388. https://doi.org/10.1002/we.426 
  33. Lee, S.K., Park, E.C., Min, K.W., Lee, S.H., Chung, L. and Park, J.H. (2007), "Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures", J. Sound Vib., 302(3), 596-612. https://doi.org/10.1016/j.jsv.2006.12.006 
  34. Li, J., Zhang, Z. and Chen, J. (2012), "Experimental study on vibration control of offshore wind turbines using a ball vibration absorber", Energy Power Eng., 4(3), 153-157. https://doi.org/10.4236/epe.2012.43021 
  35. Lin, C.C., Hu, C.M., Wang, J.F. and Hu, R.Y. (1994), "Vibration control effectiveness of passive tuned mass dampers", J. Chin. Inst. Eng., 17(3), 367-376. https://doi.org/10.1080/02533839.1994.9677600 
  36. Lin, C.C., Ueng, J.M. and Huang, T.C. (1999), "Seismic response reduction of irregular buildings using passive tuned mass dampers", Eng. Struct., 22(5), 513-524. https://doi.org/10.1016/S0141-0296(98)00054-6 
  37. Lin, G.L., Lu, L.Y., Lei, K.T., Liu, K.Y., Ko, Y.Y. and Ju, S.H. (2021), "Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect", Mar. Struct., 77, 102961. https://doi.org/10.1016/j.marstruc.2021.102961 
  38. Ljung, L. (1999), System identification: Theory for the user, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, USA. 
  39. Lu, L.Y., Lin, G.L. and Lin, C.Y. (2011), "Experimental verification of a piezoelectric smart isolation system", Struct. Control Health Monitor., 18(8), 869-889. https://doi.org/10.1002/stc.407 
  40. Lu, L., Fermandois, G.A., Lu, X., Spencer Jr., B.F., Duan, Y.F. and Zhou, Y. (2019), "Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation", Smart Struct. Syst., Int. J., 23(6), 589-613. https://doi.org/10.12989/sss.2019.23.6.589 
  41. Mahin, S.A. and Shing, P.B. (1985), "Pseudo dynamic method for seismic testing", J. Struct. Eng., 111(7), 1482-1503. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:7(1482) 
  42. McCrum, D.P. and Williams, M.S. (2016), "An overview of seismic hybrid testing of engineering structures", Eng. Struct., 118, 240-261. https://doi.org/10.1016/j.engstruct.2016.03.039 
  43. Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106 
  44. Neild, S.A., Stoten, D.P., Drury, D. and Wagg, D.J. (2005), "Control issues relating to real-time sub-structuring experiments using a shaking table", Earthq. Eng. Struct. Dyn., 34(9), 1171-1192. https://doi.org/10.1002/eqe.473 
  45. Overschee, P.V. and Moor, B.D. (1994), "N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems", Automatica, 30(1), 75-93. https://doi.org/10.1016/0005-1098(94)90230-5 
  46. Reinhorn, A.M., Bruneau, M., Chu, S.Y., Shao, X. and Pitman, M.C. (2003), "Large scale real time dynamic hybrid testing technique-shake tables substructure testing", In: ASCE/SEI Structures Congress and Exposition, Seattle, WA, USA. 
  47. Shao, X., van de Lindt, J., Bahmani, P., Pang, W., Ziaei, E., Symans, M., Tian, J. and Dao, T. (2014), "Real-time hybrid simulation of a multi-story wood shear wall with first-story experimental substructure incorporating a rate-dependent seismic energy dissipation device", Smart Struct. Syst., Int. J., 14(6), 1031-1054. https://doi.org/10.12989/sss.2014.14.6.1031 
  48. Takanashi, K. and Nakashima, M. (1987), "Japanese activities on on-line testing", J. Eng. Mech., 113(7), 1014-1032. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:7(1014) 
  49. Tu, J.Y. (2013), "Development of numerical-substructure-based and output-based sub structuring controllers", Struct. Control Health Monitor., 20(6), 918-936. https://doi.org/10.1002/stc.1505 
  50. Tu, J.Y., Lin, P.Y., Stoten, D.P. and Li, G. (2010), "Testing of dynamically sub-structured, base-isolated systems using adaptive control techniques", Earthq. Eng. Struct. Dyn., 39(6), 661-681. https://doi.org/10.1002/eqe.962 
  51. Wang, Z., Wu, B., Bursi, O.S., Xu, G. and Ding, Y. (2014), "An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1247-1267. https://doi.org/10.12989/sss.2014.14.6.1247 
  52. Wang, K.J., Chuang, M.C., Tsai, K.C., Li, C.H., Chin, P.Y. and Chueh, S.Y. (2019), "Hybrid testing with model updating on steel panel damper substructures using a multi-axial testing system", Earthq. Eng. Struct. Dyn., 48(3), 347-365. https://doi.org/10.1002/eqe.3139 
  53. Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569 
  54. Wu, B., Wang, Q., Shing, B.P. and Ou, J. (2007), "Equivalent force control method for generalized real-time substructure testing with implicit integration", Earthq. Eng. Struct. Dyn., 36(9), 1127-1149. https://doi.org/10.1002/eqe.674 
  55. Yang, F., Sedaghati, R. and Esmailzadeh, E. (2021), "Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review", J. Vib. Control, 28(7-8), 812-836. https://doi.org/10.1177/1077546320984305 
  56. Yeh, S.W. (2017), "Verification of real-time hybrid tests by shaking table tests for vibration control systems with friction property", Ph.D. Dissertation; National Cheng Kung University, Tainan, Taiwan. 
  57. Zhang, Z., Chen, J.B. and Li, J. (2014), "Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber", Struct. Infrastruct. Eng., 10(8), 1087-1100. https://doi.org/10.1080/15732479.2013.792098 
  58. Zhang, Z., Staino, A., Basu, B. and Nielsen, S.R.K (2016), "Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing", Eng. Struct., 126, 417-431. https://doi.org/10.1016/j.engstruct.2016.07.008 
  59. Zhang, Z., Basu, B. and Nielsen, S.R.K. (2019), "Real-time hybrid aero-elastic simulation of wind turbines with various types of full-scale tuned liquid dampers", Wind Energy, 22(2), 239-256. https://doi.org/10.1002/we.228 
  60. Zhao, B., Gao, H., Wang, Z. and Lu, Z. (2018), "Shaking table test on vibration control effects of a monopile offshore wind turbine with a tuned mass damper", Wind Energy, 21(12), 1309-1328. https://doi.org/10.1002/we.2256 
  61. Zhou, Z. and Li, N. (2021), "Improving model-based compensation method for real-time hybrid simulation considering error of identified model", J. Vib. Control, 27(21-22), 2523-2535. https://doi.org/10.1177/1077546320961622 
  62. Zhu, F., Wang, J.T., Jin, F. and Lu, L.Q. (2017), "Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures", Eng. Struct., 138, 74-90. https://doi.org/10.1016/j.engstruct.2017.02.004