Acknowledgement
The authors thank the Tainan laboratory at the National Center for Research on Earthquake Engineering (NCREE, Taiwan) for technical and financial support for the experiments. The authors are also grateful to Prof. ChiChang Lin (the Department of Civil Engineering, National Chung Hsing University, Taiwan) for the valuable information related to the design and fabrication of the TMD system.
References
- Asai, T., Chang, C.M. and Spencer Jr., B.F. (2015), "Real-time hybrid simulation of a smart base-isolated building", J. Eng. Mech., 141(3), 1943-7889. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000844
- Bargi, K., Dezvareh, R. and Mousavi, S.A. (2016), "Contribution of tuned liquid column gas dampers to the performance of offshore wind turbines under wind, wave, and seismic excitations", Earthq. Eng. Eng. Vib., 15, 551-561. https://doi.org/10.1007/s11803-016-0343-z
- Calabrese, A., Strano, S. and Terzo, M. (2015), "Real-time hybrid simulations vs shaking table tests: Case study of a fibre-reinforced bearings isolated building under seismic loading", Struct. Control. Health. Monitor., 22(3), 535-556. https://doi.org/10.1002/stc.1687
- Carrion, J.E. and Spencer Jr., B.F. (2008), "Real-time hybrid testing using model-based delay compensation", Smart Struct. Syst., Int. J., 4(6), 809-828. https://doi.org/10.12989/sss.2008.4.6.809
- Chae, Y., Park, M., Kim, C.Y. and Park, Y.S. (2017), "Experimental study on the rate-dependency of reinforced concrete structures using slow and real-time hybrid simulations", Eng. Struct., 132, 648-658. https://doi.org/10.1016/j.engstruct.2016.11.065
- Chang, S.Y., Wu, T.H., Tran, N.C. and Yang, Y.S. (2017), "Applications of a family of unconditionally stable, dissipative, explicit methods to pseudo dynamic tests", Experim. Techniq., 41(1), 19-36. https://doi.org/10.1007/s40799-016-0151-4
- Chen, J. and Georgakis, C.T. (2013), "Tuned rolling-ball dampers for vibration control in wind turbines", J. Sound Vib., 332(21), 5271-5282. https://doi.org/10.1016/j.jsv.2013.05.019
- Chen, P.C., Tsai, K.C. and Lin, P.Y. (2014), "Real-time hybrid testing of a smart base isolation system", Earthq. Eng. Struct. Dyn., 43(1), 139-158. https://doi.org/10.1002/eqe.2341
- Chen, P.C., Chang, C.M., Spencer Jr., B.F. and Tsai, K.C. (2015), "Adaptive model-based tracking control for real-time hybrid simulation", Bull. Earthq. Eng., 13, 1633-1653. https://doi.org/10.1007/s10518-014-9681-2
- Chen, P.C., Hsu, S.C., Zhong, Y.J. and Wang, S.J. (2019), "Realtime hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. https://doi.org/10.12989/sss.2019.23.1.091
- Chen, P.C., Dong, M.W., Chen, P.C. and Nakata, N. (2020), "Stability analysis and verification of real-time hybrid simulation using a shake table for building mass damper systems", Front. Built Environ., 6, 109. https://doi.org/10.3389/fbuil.2020.00109
- Chu, S.Y., Lu, L.Y., Yeh, S.W., Chia, P.Y. and Ning, W.C. (2018), "Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table", Struct. Control. Health. Monitor., 25(3), e2124. https://doi.org/10.1002/stc.2124
- Colwell, S. and Basu, B. (2009), "Tuned liquid column dampers in offshore wind turbines for structural control", Eng. Struct., 31(2), 358-368. https://doi.org/10.1016/j.engstruct.2008.09.001
- Connor, J.J. (2002), Introduction to Structural Motion Control., 1st edition, Prentice Hall.
- Drazina, P.L. and Govindjee, S. (2017), "Hybrid simulation theory for a classical nonlinear dynamical system", J. Sound Vib., 3927, 240-259. https://doi.org/10.1016/j.jsv.2016.12.034
- Facchinetti, A. and Bruni, S. (2012), "Hardware-in-the-loop hybrid simulation of pantograph-catenary interaction", J. Sound Vib., 331(12), 2783-2797. https://doi.org/10.1016/j.jsv.2012.01.033
- Fu, B., Jiang, H. and Wu, T. (2019), "Experimental study of seismic response reduction effects of particle damper using substructure shake table testing method", Struct. Control Health Monitor., 26(2), e2295. https://doi.org/10.1002/stc.2295
- Hakuno, H., Shidawara, M. and Hara, T. (1969), "Dynamic destructive test of a cantilever beam controlled by an analog-computer", Transact. Japan Soc. Engr., 171, 1-9. https://doi.org/10.2208/jscej1969.1969.171_1
- Hayati, S. and Song, W. (2017), "An optimal discrete-time feedforward compensator for real-time hybrid simulation", Smart Struct. Syst., Int. J., 20(4), 483-498. https://doi.org/10.12989/sss.2017.20.4.483
- He, T. and Jiang, N. (2019), "Substructure shake table test for equipment-adjacent structure-soil interaction based on the branch mode method", Struct. Des. Tall Spec. Build., 28(4), e1573. https://doi.org/10.1002/tal.1573
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Horiuchi, T., Inoue, M. and Konno, T. (2000), "Development of a real-time hybrid experimental system using a shaking table", Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
- Iemura, H., Igarashai, A. and Takahashi, Y. (1999), "Sub-structured hybrid techniques for actuator loading and shake table tests", Proceedings of the First International Conference on Advances in Structural Engineering and Mechanics, Seoul, South Korea.
- Igarashi, A., Iemura, H. and Suwa, T. (2000), "Development of sub-structured shaking table test method", Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
- Igarashi, A., Iemura, H., Tanaka, H. and Tsuruta, D. (2004), "Experimental simulation of coupled response of structural systems using the substructure hybrid shake table test method", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada.
- Jin, X., Xie, S., He, J., Lin, Y., Wang, Y. and Wang, N. (2018), "Optimization of tuned mass damper parameters for floating wind turbines by using the artificial fish swarm algorithm", Ocean Eng., 167, 130-141. https://doi.org/10.1016/j.oceaneng.2018.08.031
- Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), "Definition of a 5-MW reference wind turbine for offshore system development", National Renewable Energy Laboratory; NREL/TP-500-38060.
- Ju, S.H. and Huang, Y.C. (2019), "Analyses of offshore wind turbine structures with soil-structure interaction under earthquakes", Ocean Eng., 187, 106190. https://doi.org/10.1016/j.oceaneng.2018.08.031
- Ju, S.H., Su, F.C., Jiang, Y.T. and Chiu, T.C. (2019a), "Ultimate load design of jacket-type offshore wind turbines under tropical cyclones", Wind Energy, 22(5), 685-697. https://doi.org/10.1002/we.2315
- Ju, S.H., Su, F.C., Ke, Y.P. and Xie, M.H. (2019b), "Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme", Renew. Energy, 136, 69-78. https://doi.org/10.1016/j.renene.2018.12.071
- Khoo, H.H., Tsai, K.C., Tsai, C.Y., Tsai, C.Y. and Wang, K.J. (2016), "Bidirectional substructure pseudo-dynamic tests and analysis of a full-scale two-story buckling-restrained braced frame", Earthq. Eng. Struct. Dyn., 45(7), 1085-1107. https://doi.org/10.1002/eqe.2696
- Lackner, M.A. and Rotea, M.A. (2011), "Passive structural control of offshore wind turbines", Wind Energy, 14(3), 373-388. https://doi.org/10.1002/we.426
- Lee, S.K., Park, E.C., Min, K.W., Lee, S.H., Chung, L. and Park, J.H. (2007), "Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures", J. Sound Vib., 302(3), 596-612. https://doi.org/10.1016/j.jsv.2006.12.006
- Li, J., Zhang, Z. and Chen, J. (2012), "Experimental study on vibration control of offshore wind turbines using a ball vibration absorber", Energy Power Eng., 4(3), 153-157. https://doi.org/10.4236/epe.2012.43021
- Lin, C.C., Hu, C.M., Wang, J.F. and Hu, R.Y. (1994), "Vibration control effectiveness of passive tuned mass dampers", J. Chin. Inst. Eng., 17(3), 367-376. https://doi.org/10.1080/02533839.1994.9677600
- Lin, C.C., Ueng, J.M. and Huang, T.C. (1999), "Seismic response reduction of irregular buildings using passive tuned mass dampers", Eng. Struct., 22(5), 513-524. https://doi.org/10.1016/S0141-0296(98)00054-6
- Lin, G.L., Lu, L.Y., Lei, K.T., Liu, K.Y., Ko, Y.Y. and Ju, S.H. (2021), "Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect", Mar. Struct., 77, 102961. https://doi.org/10.1016/j.marstruc.2021.102961
- Ljung, L. (1999), System identification: Theory for the user, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, USA.
- Lu, L.Y., Lin, G.L. and Lin, C.Y. (2011), "Experimental verification of a piezoelectric smart isolation system", Struct. Control Health Monitor., 18(8), 869-889. https://doi.org/10.1002/stc.407
- Lu, L., Fermandois, G.A., Lu, X., Spencer Jr., B.F., Duan, Y.F. and Zhou, Y. (2019), "Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation", Smart Struct. Syst., Int. J., 23(6), 589-613. https://doi.org/10.12989/sss.2019.23.6.589
- Mahin, S.A. and Shing, P.B. (1985), "Pseudo dynamic method for seismic testing", J. Struct. Eng., 111(7), 1482-1503. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:7(1482)
- McCrum, D.P. and Williams, M.S. (2016), "An overview of seismic hybrid testing of engineering structures", Eng. Struct., 118, 240-261. https://doi.org/10.1016/j.engstruct.2016.03.039
- Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
- Neild, S.A., Stoten, D.P., Drury, D. and Wagg, D.J. (2005), "Control issues relating to real-time sub-structuring experiments using a shaking table", Earthq. Eng. Struct. Dyn., 34(9), 1171-1192. https://doi.org/10.1002/eqe.473
- Overschee, P.V. and Moor, B.D. (1994), "N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems", Automatica, 30(1), 75-93. https://doi.org/10.1016/0005-1098(94)90230-5
- Reinhorn, A.M., Bruneau, M., Chu, S.Y., Shao, X. and Pitman, M.C. (2003), "Large scale real time dynamic hybrid testing technique-shake tables substructure testing", In: ASCE/SEI Structures Congress and Exposition, Seattle, WA, USA.
- Shao, X., van de Lindt, J., Bahmani, P., Pang, W., Ziaei, E., Symans, M., Tian, J. and Dao, T. (2014), "Real-time hybrid simulation of a multi-story wood shear wall with first-story experimental substructure incorporating a rate-dependent seismic energy dissipation device", Smart Struct. Syst., Int. J., 14(6), 1031-1054. https://doi.org/10.12989/sss.2014.14.6.1031
- Takanashi, K. and Nakashima, M. (1987), "Japanese activities on on-line testing", J. Eng. Mech., 113(7), 1014-1032. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:7(1014)
- Tu, J.Y. (2013), "Development of numerical-substructure-based and output-based sub structuring controllers", Struct. Control Health Monitor., 20(6), 918-936. https://doi.org/10.1002/stc.1505
- Tu, J.Y., Lin, P.Y., Stoten, D.P. and Li, G. (2010), "Testing of dynamically sub-structured, base-isolated systems using adaptive control techniques", Earthq. Eng. Struct. Dyn., 39(6), 661-681. https://doi.org/10.1002/eqe.962
- Wang, Z., Wu, B., Bursi, O.S., Xu, G. and Ding, Y. (2014), "An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1247-1267. https://doi.org/10.12989/sss.2014.14.6.1247
- Wang, K.J., Chuang, M.C., Tsai, K.C., Li, C.H., Chin, P.Y. and Chueh, S.Y. (2019), "Hybrid testing with model updating on steel panel damper substructures using a multi-axial testing system", Earthq. Eng. Struct. Dyn., 48(3), 347-365. https://doi.org/10.1002/eqe.3139
- Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569
- Wu, B., Wang, Q., Shing, B.P. and Ou, J. (2007), "Equivalent force control method for generalized real-time substructure testing with implicit integration", Earthq. Eng. Struct. Dyn., 36(9), 1127-1149. https://doi.org/10.1002/eqe.674
- Yang, F., Sedaghati, R. and Esmailzadeh, E. (2021), "Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review", J. Vib. Control, 28(7-8), 812-836. https://doi.org/10.1177/1077546320984305
- Yeh, S.W. (2017), "Verification of real-time hybrid tests by shaking table tests for vibration control systems with friction property", Ph.D. Dissertation; National Cheng Kung University, Tainan, Taiwan.
- Zhang, Z., Chen, J.B. and Li, J. (2014), "Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber", Struct. Infrastruct. Eng., 10(8), 1087-1100. https://doi.org/10.1080/15732479.2013.792098
- Zhang, Z., Staino, A., Basu, B. and Nielsen, S.R.K (2016), "Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing", Eng. Struct., 126, 417-431. https://doi.org/10.1016/j.engstruct.2016.07.008
- Zhang, Z., Basu, B. and Nielsen, S.R.K. (2019), "Real-time hybrid aero-elastic simulation of wind turbines with various types of full-scale tuned liquid dampers", Wind Energy, 22(2), 239-256. https://doi.org/10.1002/we.228
- Zhao, B., Gao, H., Wang, Z. and Lu, Z. (2018), "Shaking table test on vibration control effects of a monopile offshore wind turbine with a tuned mass damper", Wind Energy, 21(12), 1309-1328. https://doi.org/10.1002/we.2256
- Zhou, Z. and Li, N. (2021), "Improving model-based compensation method for real-time hybrid simulation considering error of identified model", J. Vib. Control, 27(21-22), 2523-2535. https://doi.org/10.1177/1077546320961622
- Zhu, F., Wang, J.T., Jin, F. and Lu, L.Q. (2017), "Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures", Eng. Struct., 138, 74-90. https://doi.org/10.1016/j.engstruct.2017.02.004