DOI QR코드

DOI QR Code

Investigation on vibration behavior of a high-speed railway bridge based on monitoring data

  • Qingxin Zhu (Key Laboratory of C&PC Structures of Ministry of Education, Southeast University) ;
  • Hao Wang (Key Laboratory of C&PC Structures of Ministry of Education, Southeast University) ;
  • Billie F. Spencer Jr (Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign)
  • Received : 2021.07.30
  • Accepted : 2023.06.12
  • Published : 2023.06.25

Abstract

Field monitoring techniques offer an attractive approach for understanding bridge behavior under in-service loads. However, the investigations on bridge behavior under high-speed train load using field monitoring data are limited. The focus of this study is to explore the structural behavior of an in-service long-span steel truss arch bridge based on field monitoring data. First, the natural frequencies of the structure, as well as the train driving frequencies, are extracted. Then, the train-induced bearing displacement and structural strain are explored to identify the effects of train loads and bearings. Subsequently, a sensitivity analysis is performed for the impact factor of strain responses with respect to the train speed, train weight, and temperature to identify the fundamental issues affecting these responses. Additionally, a similar sensitivity analysis is conducted for the peak acceleration. The results indicate that the friction force in bearings provides residual deformations when two consecutive trains are in opposite directions. In addition, the impact factor and peak acceleration are primarily affected by train speed, particularly near train speeds that result in the resonance of the bridge response. The results can provide additional insight into the behavior of the long-span steel truss bridges under in-service high-speed train loads.

Keywords

Acknowledgement

The authors would like to gratefully acknowledge the supports from the National Natural Science Foundation of China (Grant No. 51978155), the National Ten Thousand Talent Program for Young Top-notch Talents (Grant No. W03070080), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX19_0095), the CSC Scholarship (Grant No. CSC201906090075), and the Fundamental Research Funds for the Central Universities (Grant No. 2242022k30030).

References

  1. AREMA (American Railway Engineering and Maintenance-of-Way Association) (2016), Manual for railway engineering; American Railway Engineering Association.
  2. Ataei, S. and Miri, A. (2018), "Investigating dynamic amplification factor of railway masonry arch bridges through dynamic load tests", Constr. Build. Mater., 183, 693-705. https://doi.org/10.1016/j.conbuildmat.2018.06.151
  3. Auersch, L. (2021), "Resonances of railway bridges analysed in frequency domain by the modal-force-excitation, bridge-transfer and axle-sequence spectra", Eng. Struct., 249, 113282. https://doi.org/10.1016/j.engstruct.2021.113282
  4. Cantero, D., ulker-Kaustell, M. and Karoumi, R. (2016), "Time-frequency analysis of railway bridge response in forced vibration", Mech. Syst. Signal Process., 76, 518-530. https://doi.org/10.1016/j.ymssp.2016.01.016
  5. Fujino, Y. and Siringoringo, D.M. (2011), "Bridge monitoring in Japan: the needs and strategies", Struct. Infrastr. Eng., 7(7-8), 597-611. https://doi.org/10.1080/15732479.2010.498282
  6. Gou, H.Y., Zhao, T.Q., Qin, S.Q., Zheng, X.G., Pipinato, A. and Bao, Y. (2022), "In-situ testing and model updating of a long-span cable-stayed railway bridge with hybrid girders subjected to a running train", Eng. Struct., 253, 113823. https://doi.org/10.1016/j.engstruct.2021.113823
  7. He, X.H., Hua, X.G., Chen, Z.Q. and Huang, F.L. (2011), "EMD-based random decrement technique for modal parameter identification of an existing railway bridge", Eng. Struct., 33(4), 1348-1356. https://doi.org/10.1016/j.engstruct.2011.01.012
  8. Ishihara, T., Zhang, D. and Nagumo, Y. (2021), "Numerical study of dynamic response of railway vehicles under tunnel exit winds using multibody dynamic simulations", J. Wind Eng. Indust. Aerodyn., 211, 104556. https://doi.org/10.1016/j.jweia.2021.104556
  9. Ju, S.H., Lin, H.T. and Huang, J.Y. (2009), "Dominant frequencies of train-induced vibrations", J. Sound Vib., 319(1-2), 247-259. https://doi.org/10.1016/j.jsv.2008.05.029
  10. Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021
  11. Leander, J., Andersson, A. and Karoumi, R. (2010), "Monitoring and enhanced fatigue evaluation of a steel railway bridge", Eng. Struct., 32(3), 854-863. https://doi.org/10.1016/j.engstruct.2009.12.011
  12. Li, S.L, Wei, S.Y., Bao, Y.Q. and Li, H. (2018), "Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio", Eng. Struct., 155, 1-15. https://doi.org/10.1016/j.engstruct.2017.09.063
  13. Liu, K., De Roeck, G. and Lombaert, G. (2009), "The effect of dynamic train-bridge interaction on the bridge response during a train passage", J. Sound Vib., 325(1-2), 240-251. https://doi.org/10.1016/j.jsv.2009.03.021
  14. Lu, Y., Mao, L., Woodward, P. (2012), "Frequency characteristics of railway bridge response to moving trains with consideration of train mass", Eng. Struct., 42, 9-22. https://doi.org/10.1016/j.engstruct.2012.04.007
  15. Malveiro, J., Sousa, C., Ribeiro, D. and Calcada, R. (2018), "Impact of track irregularities and damping on the fatigue damage of a railway bridge deck slab", Struct. Infrastr. Eng., 14(9), 1257-1268. https://doi.org/10.1080/15732479.2017.1418010
  16. Mohanty, P. and Rixen, D.J. (2004), "A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation", J. Sound Vib., 275(1-2), 375-390. https://doi.org/10.1016/j.jsv.2003.06.030
  17. Moreu, F. and LaFave, J.M. (2012), "Current research topics: Railroad bridges and structural engineering", Newmark Structural Engineering Laboratory Report Series 032. http://hdl.handle.net/2142/34749
  18. Moreu, F. and Spencer Jr, B.F. (2015), "Framework for consequence-based management and safety of railroad bridge infrastructure using wireless smart sensors (WSS)", Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA. http://hdl.handle.net/2142/78094
  19. Qu, C.X., Yi, T.H., Li, H.N. and Chen, B. (2018), "Closely spaced modes identification through modified frequency domain decomposition", Measurement, 128, 388-392. https://doi.org/10.1016/j.measurement.2018.07.006
  20. Quirke, P., Bowe, C., OBrien, E.J., Cantero, D., Antolin, P. and Goicolea, J.M. (2017), "Railway bridge damage detection using vehicle-based inertial measurements and apparent profile", Eng. Struct., 153, 421-442. https://doi.org/10.1016/j.engstruct.2017.10.023
  21. Sayed, M.A., Kaloop, M.R., Kim, E. and Kim, D. (2017), "Assessment of acceleration responses of a railway bridge using wavelet analysis", KSCE J. Civil Eng., 21(5), 1844-1853. https://doi.org/10.1007/s12205-016-1762-0
  22. Spencer Jr, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Control Health Monitor., 11(4), 349-368. https://doi.org/10.1002/stc.48
  23. Spencer Jr, B.F., Moreu, F. and Kim, R.E. (2015), "Campaign monitoring of railroad bridges in high-speed rail shared corridors using wireless smart sensors", Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA. http://hdl.handle.net/2142/78095
  24. Su, D., Fujino, Y., Nagayama, T., Hernandez Jr, J.Y. and Seki, M. (2010), "Vibration of reinforced concrete viaducts under high-speed train passage: measurement and prediction including train-viaduct interaction", Struct. Infrastr. Eng., 6(5), 621-633. https://doi.org/10.1080/15732470903068888
  25. Sun, S.W., Sun, L.M. and Chen, L. (2016), "Damage detection based on structural responses induced by traffic load: methodology and application", Int. J. Struct. Stabil. Dyn., 16(4), 1640026. https://doi.org/10.1142/S0219455416400265
  26. Tao, T.Y., Wang, H., Hu, S.T. and Zhao, X.X. (2018), "Dynamic performance of typical steel truss-railway bridges under the action of moving trains", J. Perform. Constr. Facil., 32(4), 04018053. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001200
  27. Vagnoli, M., Remenyte-Prescott, R. and Andrews, J. (2018), "Railway bridge structural health monitoring and fault detection: State-of-the-art methods and future challenges", Struct. Health Monitor., 17(4), 971-1007. https://doi.org/10.1177%2F1475921717721137 https://doi.org/10.1177%2F1475921717721137
  28. Wan, H.P. and Ni, Y.Q. (2019), "Bayesian multi-task learning methodology for reconstruction of structural health monitoring data", Struct. Health Monitor., 18(4), 1282-1309. https://doi.org/10.1177%2F1475921718794953 https://doi.org/10.1177%2F1475921718794953
  29. Wang, H., Wu, T., Tao, T.Y., Li, A.Q. and Kareem, A. (2016), "Measurements and analysis of non-stationary wind characteristics at Sutong Bridge in Typhoon Damrey", J. Wind Eng. Indust. Aerodyn., 151, 100-106. https://doi.org/10.1016/j.jweia.2016.02.001
  30. Wang, H., Zhu, Q.X., Li, J., Mao, J.X., Hu, S.T. and Zhao, X.X. (2019), "Identification of moving train loads on railway bridge based on strain monitoring", Smart Struct. Syst., Int. J., 23(3), 263-278. https://doi.org/10.12989/sss.2019.23.3.263
  31. Wu, B.T., Wu, G., Yang, C.Q. and He, Y. (2018), "Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads", Mech. Syst. Signal Process., 104, 415-435. https://doi.org/10.1016/j.ymssp.2017.10.040
  32. Xia, Y., Chen, B., Zhou, X.Q. and Xu, Y.L. (2013), "Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior", Struct. Control Health Monitor., 20(4), 560-575. https://doi.org/10.1002/stc.515
  33. Xu, Y.L., Chen, B., Ng, C.L., Wong, K.Y. and Chan, W.Y. (2010), "Monitoring temperature effect on a long suspension bridge", Struct. Control Health Monitor., 17(6), 632-653. https://doi.org/10.1002/stc.340
  34. Xue, H., Liu, D., Ge, R., Pan, L.B, and Peng, W.J. (2020), "The delay loop phenomenon in high temperature elasticity modulus test by in-situ ultrasonic measurements", Measurement, 160, 107833. https://doi.org/10.1016/j.measurement.2020.107833
  35. Zhai W.M., Liu P.F., Lin J.H. and Wang K.Y. (2015), "Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h", Int. J. Rail Transport., 3(1), 1-16. https://doi.org/10.1080/23248378.2014.992819
  36. Zhai, W.M., Han, Z.L., Chen, Z.W., Ling, L. and Zhu, S.Y. (2019), "Train-track-bridge dynamic interaction: a state-of-the-art review", Vehicle Syst. Dyn., 57(7), 984-1027. https://doi.org/10.1080/00423114.2019.1605085
  37. Zhu, Q.X., Wang, H., Xu, Z.D., Spencer Jr, B.F., Mao, J.X. and Gong, Z.H. (2021), "Investigation on temperature contours for a long-span steel truss arch bridge based on field monitoring data", J. Civil Struct. Health Monitor., 1-19. https://doi.org/10.1007/s13349-021-00479-8