Acknowledgement
This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (grant numbers 2022R1C1C2008186). This study was supported by a grant (2021-MOIS32-041) from the Ministry of Interior and Safety (MOIS, Korea). This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-00075, Artificial Intelligence Graduate School Program (KAIST)).
References
- Ali, R., Kang, D., Suh, G. and Cha, Y.J. (2021), "Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures", Autom. Constr., 130(103831). https://doi.org/10.1016/j.autcon.2021.103831
- Bahri, H., Krcmarik, D., Moezzi, R. and Koci, J. (2019), "Efficient use of mixed reality for BIM system using Microsoft HoloLens", IFAC-Papers Online, 52(27) 235-239. https://doi.org/10.1016/j.ifacol.2019.12.762
- Bolya, D., Zhou, C., Xiao, F. and Lee, Y.J. (2019), "Yolact: Realtime instance segmentation", Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9157-9166.
- Dai, A., Niessner, M., Zollhofer, M., Izadi, S. and Theobalt, C. (2017), "BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration", ACM Trans. Graph., 36(3), 1-18. https://doi.org/10.1145/3054739
- Falorca, J.F., Miraldes, J.P. and Lanzinha, J.C.G. (2021), "New trends in visual inspection of buildings and structures: study for the use of drones", Open Eng., 11(1), 734-743. https://doi.org/10.1515/eng-2021-0071
- Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A. and Fitzgibbon, A. (2011), "KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera", Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA.
- Karaaslan, E., Bagci, U. and Catbas, F.N. (2019), "Artificial intelligence assisted infrastructure assessment using mixed reality systems", Transp. Res. Rec., 2673(12). https://doi.org/10.1177/0361198119839988
- Kim, B. and Cho, S. (2020), "Automated multiple concrete damage detection using instance segmentation deep learning model", J. Appl. Sci. 10(22), 1-17. https://doi.org/10.3390/app10228008
- Kim, I.H., Jeon, H., Baek, S.C., Hong, W.H. and Jung, H.J. (2018), "Application of crack identification techniques for an aging concrete bridge inspection using an un- manned aerial vehicle", Sensors, 18(6), 1-14. https://doi.org/10.3390/s18061881
- Li, S., Zhao, X. and Zhou, G. (2019), "Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network", Comput.Aided Civ. Infrastruct. Eng., 34(7), 616-634. https://doi.org/10.1111/mice.12433
- Maharjan, D., Aguero, M., Mascarenas, D., Fierro, R. and Moreu, F. (2020), "Enabling human-infrastructure interfaces for inspection using augmented reality", Struct. Health Monitor., 20(4), 147592172097701. https://doi.org/10.1177/1475921720977017
- Mascarenas, D.D., Ballor, J.P., McClain, O.L., Mellor, M.A., Shen, C.Y., Bleck, B., Morales, J., Yeong, L.M.R., Narushof, B., Shelton, P. and Martinez, E. (2020), "Augmented reality for next generation infrastructure inspections", Struct. Health Monitor., 20(4), 147592172095384. https://doi.org/10.1177/1475921720953846
- Nguyen, D.C., Nguyen, T.Q., Jin, R., Jeon, C.H. and Shim, C.S. (2021), "BIM-based mixed-reality application for bridge inspection and maintenance", Constr. Innov., 22(3), 487-503. https://doi.org/10.1108/ci-04-2021-0069
- Niessner, M., Zollhofer, M., Izadi, S. and Stamminger, M. (2013), "Real-time 3D reconstruction at scale using voxel hashing", ACM Trans. Graph, 32(6), 1-11. https://doi.org/10.1145/2508363.2508374
- Ong, S. (2021), Beginning Windows Mixed Reality Programming, (1st ed.), Apress, Berkeley, CA, USA. https://doi.org/10.1007/978-1-4842-2769-5
- Puz, G., Radic, J. and Tenzera, D. (2012), "Visual inspection in evaluation of bridge condition", Gradevinar, 64(9), 717-726. https://doi.org/10.14256/jce.718.2012
- Rublee, E., Rabaud, V., Konolige, K. and Bradski, G. (2011), "ORB: an efficient alternative to SIFT or SURF", Proceedings of 2011 International Conference on Computer Vision, Barcelona, Spain, pp. 2564-2571. https://doi.org/10.1109/ICCV.2011.6126544
- Sofiiuk, K., Petrov, I., Barinova, O. and Konushin, A. (2020), "fbrs: Rethinking backpropagating refinement for interactive segmentation", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8623-8632.
- Wang, S., Zargar, S.A. and Yuan, F.G. (2021), "Augmented reality for enhanced visual inspection through knowledge-based deep learning", Struct. Health Monit., 20(1), 426-442. https://doi.org/10.1177/1475921720976986
- Yang, X., Li, H., Yu, Y., Luo, X., Huang, T. and Yang, X. (2018a), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput. Aided Civ. Infrastruct. Eng., 33(12), 1090-1109. https://doi.org/10.1111/mice.12412
- Yang, L., Li, B., Li, W., Jiang, B. and Xiao, J. (2018b), "Semantic metric 3D reconstruction for concrete inspection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt-Lake City, UT, USA, pp. 1624-1632. https://doi.org/10.1109/CVPRW.2018.00204
- Zhang, C., Chang, C.C. and Jamshidi, M. (2020), "Concrete bridge surface damage detection using a single-stage detector", Comput.-Aided Civ. Infrastruct. Eng., 35(4), 389-409. https://doi.org/10.1111/mice.12500
- Zhang, C., Chang, C.C. and Jamshidi, M. (2021), "Simultaneous pixel-level concrete defect detection and grouping using a fully convolutional model", Struct. Health Monitor., 20(4), 2199-2215. https://doi.org/10.1177/1475921720985437