Structural, Morphological and Electrical Properties of TiO2 Thin Films Deposited by ALD Method

  • Seung-Yeon Oh (Department of Electronic Engineering, Myongji University) ;
  • Jae-Min Shin (Department of Electronic Engineering, Myongji University) ;
  • Gyeong-Hun Na (Department of Electronic Engineering, Myongji University) ;
  • Min-Seok Kwon (Department of Electronic Engineering, Myongji University) ;
  • Sang-Jeen Hong (Department of Semiconductor Engineering, Myongji University) ;
  • Bumsuk Jung (Department of Semiconductor Engineering, Myongji University)
  • Received : 2023.06.04
  • Accepted : 2023.06.21
  • Published : 2023.06.30

Abstract

TiO2 thin films were grown using the Atomic Layer Deposition (ALD) and their structural and electrical properties were investigated. The crystal structure, dielectric constant, and surface roughness of the TiO2 thin films grown by the ALD deposition method were studied. The grown TiO2 thin films showed an anatase crystal structure, and their properties varied with temperature. In particular, the properties of the TiO2 thin films were confirmed by changing the process temperature. The electrical properties of Metal-Insulator-Silicon (MIS) capacitor structures were analyzed using a probe station. The performance improvement of capacitors using TiO2 as a dielectric was confirmed by measuring capacitance through Capacitance-Voltage (C-V) curves.

Keywords

Acknowledgement

This research was conducted as part of the 2023 Department-Industry Cooperative Semiconductor Major Track Program, supported by the Korea Institute for Advancement of technology (Project No. G02P18800005501). We would like to express our gratitude to Professor Tae Min Ha from the Semiconductor Process Diagnosis Research Center at Myongji University for his mentoring and valuable assistance throughout the research process.

References

  1. J. G. Bang, J. H. Lee, E. C. Do, H. J. Kim, B. H. Na, H. R. Kim, B. E. Park, J. H. Lee, C. H. Kim, H. W. Jang, Y. S. Kim, "Interface engineering for substantial performance enhancement in epitaxial all-perovskite oxide capacitors", NPG Asia Mater., vol. 15, no. 4, pp. 1-7, 2023. [DOI:10.1038/s41427-022-00460-x]
  2. K. H. Yim, Y. Yong, J. H. Lee, K. H. Lee, H. H. Nahm, J. H. Yoo, C. H. Lee, C. S. Hwang, S. W. Han, "Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations", NPG Asia Mater., vol. 7, pp. 190-e190, 2015. [DOI:10.1038/am.2015.57]
  3. Jeon, W., Rha, S. H., Lee, W., Yoo, Y. W., An, C. H., Jung, K. H. and Hwang, C. S., "Controlling the Al-doping profile and accompanying electrical properties of rutile-phased TiO2 thin films" ACS Appl. Mater. & interfaces, vol. 6, no. 10, pp. 7910-7917, 2010. [DOI:/10.1021/am501247u]
  4. Raley, A., Thibaut, S., Mohanty, N., Subhadeep, K., Nakamura, S., Ko, A. and Biolsi, P., "Self-aligned quadruple patterning integration using spacer on spacer pitch splitting at the resist level for sub-32nm pitch applications", In Advanced Etch Technology for Nanopatterning V, vol. 9782, pp. 30-43, 2016. [DOI:10.1117/12.2219321]
  5. Kittl, J. A., Opsomer, K., Popovici, M., Menou, N., Kaczer, B., Wang, X. P., ... & Wouters, D. J., "High-k dielectrics for future generation memory devices.", Microelectron. Eng., vol. 86, no. 7-9, pp. 1789-1795, 2009. [DOI:10.1016/j.mee.2009.03.045]
  6. Dang, V. S., Parala, H., Kim, J. H., Xu, K., Srinivasan, N. B., Edengeiser, E., ... & Devi, A., "Electrical and optical properties of TiO2 thin films prepared by plasma-enhanced atomic layer deposition", Phys. status solidi (a), vol. 211, no. 2, pp. 416-424, 2009. [DOI:10.1002/pssa.201330115]
  7. K. J. Yoon and O. S. Song, "Property of the Nano-Thick TiO2 Films Using an ALD at Low Temperature", Korean Journal of Materials Research, vol. 18, no. 10, pp. 515, 2008. [DOI: 10.3740/MRSK.2008.18.10.515]
  8. Reinke, M., Kuzminykh, Y., & Hoffmann, P., "Surface reaction kinetics of titanium isopropoxide and water in atomic layer deposition", J. Phys. Chem. C, vol. 120, no. 8, pp. 4337-4344, 2016. [DOI: 10.1021/acs.jpcc.5b10529]
  9. George, Steven M. "Atomic layer deposition: an overview." Chem. Rev. vol. 110, no. 1, pp. 111-131, 2010. [DOI: 10.1021/cr900056b]
  10. Armstrong C., Delumeau L. V., Munoz-Rojas D., Kursumovic A., MacManus-Driscoll J. and Musselman K. P., "Tuning the band gap and carrier concentration of titania films grown by spatial atomic layer deposition: a precursor comparison", Nanoscale Advances, vol. 3, no. 20, pp. 5908-5918, 2021. [DOI: 10.1039/d1na00563d]
  11. Ritala, M., Leskela, M., Niinisto, L., Haussalo, P., "Titanium isopropoxide as a precursor in atomic layer epitaxy of titanium dioxide thin films", Chem. Mater., vol. 5, no. 8, pp. 1174-1181, 1993. [DOI: doi.org/10.1021/cm00032a023]
  12. Chiappim, W., Testoni, G. E., Moraes, R. S., Pessoa, R. S., Sagas, J. C., Origo, F. D., Maci & Maciel, H. S., "Structural, morphological, and optical properties of TiO2 thin films grown by atomic layer deposition on fluorine doped tin oxide conductive glass", Vacuum, vol. 123, pp. 91-102, 2016. [DOI: 10.1016/j.vacuum.2015.10.019]
  13. A. Alyamani and O. M. Lemine. "FE-SEM characterization of some nanomaterial." Scan. electron Microsc., 2012. [DOI: 10.5772/34361]
  14. D. H. Shin, H. L. Cho, S. R. Park, H. J. Oh, and D. H. Ko, "Improvement in Capacitor Characteristics of Titanium Dioxide Film with Surface Plasma Treatment", J. Semicond. & Displ. Technol, vol. 18, no. 1, pp. 32-37, 2019.
  15. Kaufherr, N. and Lichtman, D., "X-ray photoelectron spectroscopy studies of thin films of TiN x having different annealing histories" J. Vac. Sci. & Technol. A: Vacuum, Surfaces, and Films, vol. 3, no. 5, pp. 1969-1972, 1985. [DOI: 10.1116/1.572953]
  16. Bharti, B., Kumar, S., Lee, H. N. and Kumar, R., "Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment", Sci. Rep., vol. 6, no. 1, pp. 1-12, 2016. [DOI:10.1038/srep32355]
  17. Y. Li, J. Shen, J. Li, S. Liu, D. Yu, R. Xu, W. F. Fu, X. J. Lv, "Constructing a novel strategy for carbon-doped TiO2 multiple-phase nanocomposites toward superior electrochemical performance for lithium ion batteries and the hydrogen evolution reaction", J. Mater. Chem. A, vol. 5, no. 15, pp. 7055-7063, 2017. [DOI: 10.1039/C7TA01184A]
  18. Dirnstorfer, I., Mahne, H., Mikolajick, T., Knaut, M., Albert, M., & Dubnack, K., "Atomic layer deposition of anatase TiO2 on porous electrodes for dye-sensitized solar cells" J. Vac. Sci. & Technol. A: Vacuum, Surfaces, and Films, vol. 31, no. 1, pp. 01A116, 2013. [DOI:10.1116/1.4764889]
  19. Saha, D., Ajimsha, R. S., Rajiv, K., Mukherjee, C., Gupta, M., Misra, P. and Kukreja, L. M., "Spectroscopic ellipsometry characterization of amorphous and crystalline TiO2 thin films grown by atomic layer deposition at different temperatures", Appl. Surf. Sci., vol. 315, pp. 116-123, 2014. [DOI: 10.1016/j.apsusc.2014.07.098]
  20. Y. Q. Wang and J. Y. Cai, "Enhanced cell affinity of poly (L-lactic acid) modified by base hydrolysis: Wettability and surface roughness at nanometer scale", Curr. Appl. Phys., vol. 7, no. 1, pp. e108-e111, 2007. [DOI: 10.1016/j.cap.2006.11.027]
  21. Abubakar, S. and Yilmaz, E., "Optical and electrical properties of E-Beam deposited TiO2/Si thin films" J. Mater. Sci.: Materials in Electronics, vol. 29, no. 12, pp. 9879-9885, 2018. [DOI: 10.1007/s10854-018-9029-9]
  22. Kim, H., Yang, S., Park, K., Shanmugam, P. and Kwon, J. Y., "Leakage current analysis depends on grain size variation in zinc oxide thin film transistor", J. Electrochem. Soc. Meet. Abstr. MA2013-02 76, 2013.
  23. Theivasanthi, T. and Alagar, M., "Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight", arXiv: 1307.1091, 2013. [DOI: 10.48550/arXiv.1307.1091