DOI QR코드

DOI QR Code

Occupational exposure to polycyclic aromatic hydrocarbons in Korean adults: evaluation of urinary 1-hydroxypyrene, 2-naphthol, 1-hydroxyphenanthrene, and 2-hydroxyfluorene using Second Korean National Environmental Health Survey data

  • Dong Hyun Hong (Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital) ;
  • Jongwon Jung (Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital) ;
  • Jeong Hun Jo (Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital) ;
  • Dae Hwan Kim (Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital) ;
  • Ji Young Ryu (Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital)
  • Received : 2022.10.21
  • Accepted : 2023.03.01
  • Published : 2023.12.31

Abstract

Background: Polycyclic aromatic hydrocarbons (PAHs) are occupational and environmental pollutants generated by the incomplete combustion of organic matter. Exposure to PAHs can occur in various occupations. In this study, we compared PAH exposure levels among occupations based on 4 urinary PAH metabolites in a Korean adult population. Methods: The evaluation of occupational exposure to PAHs was conducted using Second Korean National Environmental Health Survey data. The occupational groups were classified based on skill types. Four urinary PAH metabolites were used to evaluate PAH exposure: 1-hydroxypyrene (1-OHP), 2-naphthol (2-NAP), 1-hydroxyphenanthrene (1-OHPHE), and 2-hydroxyfluorene (2-OHFLU). The fraction exceeding the third quartile of urinary concentration for each PAH metabolite was assessed for each occupational group. Adjusted odds ratios (ORs) for exceeding the third quartile of urinary PAH metabolite concentration were calculated for each occupational group compared to the "business, administrative, clerical, financial, and insurance" group using multiple logistic regression analyses. Results: The "guard and security" (OR: 2.949; 95% confidence interval [CI]: 1.300-6.691), "driving and transportation" (OR: 2.487; 95% CI: 1.418-4.364), "construction and mining" (OR: 2.683; 95% CI: 1.547-4.655), and "agriculture, forestry, and fisheries" (OR: 1.973; 95% CI: 1.220-3.191) groups had significantly higher ORs for 1-OHP compared to the reference group. No group showed significantly higher ORs than the reference group for 2-NAP. The groups with significantly higher ORs for 1-OHPHE than the reference group were "cooking and food service" (OR: 2.073; 95% CI: 1.208-3.556), "driving and transportation" (OR: 1.724; 95% CI: 1.059-2.808), and "printing, wood, and craft manufacturing" (OR: 2.255; 95% CI: 1.022-4.974). The OR for 2-OHFLU was significantly higher in the "printing, wood, and craft manufacturing" group (OR: 3.109; 95% CI: 1.335-7.241) than in the reference group. Conclusions: The types and levels of PAH exposure differed among occupational groups in a Korean adult population.

Keywords

Acknowledgement

This study used data from the Second Korean National Environmental Health Survey (2012-2014), which was conducted by National Institute of Environmental Research. The Authors gratefully acknowledge their effort.

References

  1. Harrison RJ. Chemicals. In: LaDou J, Harrison RJ, editors. CURRENT Diagnosis & Treatment: Occupational & Environmental Medicine. 6th ed. New York, NY, USA: McGraw Hill; 2021, 505-8.
  2. Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 1997;8(3):444-72. https://doi.org/10.1023/A:1018465507029
  3. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 2010;92:1-853.
  4. Driscoll TR. The Australian Work Exposures Study (AWES): Polycyclic Aromatic Hydrocarbons. Canberra, Australia: Safe Work Australia; 2014.
  5. CAREX Canada. PAHs occupational exposures. https://www.carexcanada.ca/profile/polycyclic_aromatic_hydrocarbons-occupational-exposures/. Updated 2021. Accessed July 19, 2022.
  6. Koh DH, Park JH, Lee SG, Kim HC, Choi S, Jung H, et al. Comparison of polycyclic aromatic hydrocarbons exposure across occupations using urinary metabolite 1-hydroxypyrene. Ann Work Expo Health 2020;64(4):445-54. https://doi.org/10.1093/annweh/wxaa014
  7. Yoo JY, Choi WH, Jeon HR, Joo YK, Lee CW. Guidelines for Using Raw Data for Korean National Environmental Health Survey (KoNEHS): The Second Stage (2012-2014). Incheon, Korea: Korean National Institute of Environmental Research; 2017.
  8. Kim SJ, Baek YW, Kwon YM, Choi WH, Yoo SD, Choi KH. The Second Korean National Environmental Health Survey Manual for the Analysis of Environmentally Harmful Substances in Biological Samples: Organic Compounds. Incheon, Korea: Korean National Institute of Environmental Research; 2015.
  9. Lee TW, Kim DH, Ryu JY. Association between urinary polycyclic aromatic hydrocarbons and hypertension in the Korean population: data from the Second Korean National Environmental Health Survey (2012-2014). Sci Rep 2020;10(1):17142.
  10. Chen JW, Wang SL, Hsieh DP, Yang HH, Lee HL. Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Sci Total Environ 2012;417-418:68-75. https://doi.org/10.1016/j.scitotenv.2011.12.012
  11. Chen Y, Ho KF, Ho SS, Ho WK, Lee SC, Yu JZ, et al. Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong. J Environ Monit 2007;9(12):1402-9. https://doi.org/10.1039/b710259c
  12. Li CT, Lin YC, Lee WJ, Tsai PJ. Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere. Environ Health Perspect 2003;111(4):483-7. https://doi.org/10.1289/ehp.5518
  13. Masuda M, Wang Q, Tokumura M, Miyake Y, Amagai T. Risk assessment of polycyclic aromatic hydrocarbons and their chlorinated derivatives produced during cooking and released in exhaust gas. Ecotoxicol Environ Saf 2020;197:110592.
  14. Zhu L, Wang J. Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere 2003;50(5):611-8. https://doi.org/10.1016/S0045-6535(02)00668-9
  15. Moret S, Conte LS. Polycyclic aromatic hydrocarbons in edible fats and oils: occurrence and analytical methods. J Chromatogr A 2000;882(1-2):245-53. https://doi.org/10.1016/S0021-9673(00)00079-0
  16. Yao Z, Li J, Wu B, Hao X, Yin Y, Jiang X. Characteristics of PAHs from deep-frying and frying cooking fumes. Environ Sci Pollut Res Int 2015;22(20):16110-20. https://doi.org/10.1007/s11356-015-4837-4
  17. Pan CH, Chan CC, Wu KY. Effects on Chinese restaurant workers of exposure to cooking oil fumes: a cautionary note on urinary 8-hydroxy-2'-deoxyguanosine. Cancer Epidemiol Biomarkers Prev 2008;17(12):3351-7. https://doi.org/10.1158/1055-9965.EPI-08-0075
  18. EC-European Commission. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off J Eur Union L 2005;23:3-16.
  19. Oliveira M, Capelas S, Delerue-Matos C, Morais S. Grill workers exposure to polycyclic aromatic hydrocarbons: Levels and excretion profiles of the urinary biomarkers. Int J Environ Res Public Health 2020;18(1):230.
  20. Kwon HO, Choi SD. Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Sci Total Environ 2014;470-471:1494-501. https://doi.org/10.1016/j.scitotenv.2013.08.031
  21. Liu Y, Yan C, Ding X, Wang X, Fu Q, Zhao Q, et al. Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China. Sci Total Environ 2017;584-585:307-17. https://doi.org/10.1016/j.scitotenv.2016.12.134
  22. Barakat AO. PAHs and petroleum markers in the atmospheric environment of Alexandria City, Egypt. Water Air Soil Pollut 2002;139(1):289-310. https://doi.org/10.1023/A:1015894520672
  23. de Souza CV, Correa SM. Polycyclic aromatic hydrocarbons in diesel emission, diesel fuel and lubricant oil. Fuel 2016;185:925-31. https://doi.org/10.1016/j.fuel.2016.08.054
  24. He C, Ge Y, Tan J, You K, Han X, Wang J. Characteristics of polycyclic aromatic hydrocarbons emissions of diesel engine fueled with biodiesel and diesel. Fuel 2010;89(8):2040-6. https://doi.org/10.1016/j.fuel.2010.03.014
  25. Zheng X, Wu Y, Zhang S, Hu J, Zhang KM, Li Z, et al. Characterizing particulate polycyclic aromatic hydrocarbon emissions from diesel vehicles using a portable emissions measurement system. Sci Rep 2017;7(1):10058.
  26. Romagnoli P, Balducci C, Cecinato A, L'Episcopo N, Gariazzo C, Gatto MP, et al. Fine particulate-bound polycyclic aromatic hydrocarbons in vehicles in Rome, Italy. Environ Sci Pollut Res Int 2017;24(4):3493-505. https://doi.org/10.1007/s11356-016-8098-7
  27. Karageorgou K, Manoli E, Kouras A, Samara C. Commuter exposure to particle-bound polycyclic aromatic hydrocarbons in Thessaloniki, Greece. Environ Sci Pollut Res Int 2021;28(42):59119-30. https://doi.org/10.1007/s11356-020-09475-9
  28. Piccardo MT, Stella A, Redaelli A, Balducci D, Coradeghini R, Minoia C, et al. Personal daily exposures to benzo(a)pyrene of taxi drivers in Genoa, Italy. Sci Total Environ 2004;330(1-3):39-45. https://doi.org/10.1016/j.scitotenv.2004.02.024
  29. Fromme H, Oddoy A, Piloty M, Krause M, Lahrz T. Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci Total Environ 1998;217(1-2):165-73. https://doi.org/10.1016/S0048-9697(98)00189-2
  30. Jang JH, Kang SW, Lee MK. A study on the taxi driver's working environment and improvement plan: focusing on long-term driving and health. Labor J 2020;(5):1-239.
  31. Brucker N, Moro AM, Charao MF, Durgante J, Freitas F, Baierle M, et al. Biomarkers of occupational exposure to air pollution, inflammation and oxidative damage in taxi drivers. Sci Total Environ 2013;463-464:884-93. https://doi.org/10.1016/j.scitotenv.2013.06.098
  32. Petchpoung K, Kaojarern S, Yoovathaworn K, Sura T, Sirivarasai J. The influence of metabolic gene polymorphisms on urinary 1-hydroxypyrene concentration in Thai bus drivers. Environ Toxicol Pharmacol 2011;31(1):160-4. https://doi.org/10.1016/j.etap.2010.10.006
  33. Chuang CY, Chang CC. Urinary 1-hydroxypyrene level relative to vehicle exhaust exposure mediated by metabolic enzyme polymorphisms. J Occup Health 2007;49(2):140-51. https://doi.org/10.1539/joh.49.140
  34. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Bitumens and bitumen emissions, and some N- and S-heterocyclic polycyclic aromatic hydrocarbons. IARC Monogr Eval Carcinog Risks Hum 2013;103:1-342.
  35. Toraason M, Hayden C, Marlow D, Rinehart R, Mathias P, Werren D, et al. DNA strand breaks, oxidative damage, and 1-OH pyrene in roofers with coal-tar pitch dust and/or asphalt fume exposure. Int Arch Occup Environ Health 2001;74(6):396-404. https://doi.org/10.1007/s004200100238
  36. Heikkila P, Riala R, Hameila M, Nykyri E, Pfaffli P. Occupational exposure to bitumen during road paving. AIHA J (Fairfax, Va) 2002;63(2):156-65. https://doi.org/10.1080/15428110208984699
  37. Seidel A, Dahmann D, Krekeler H, Jacob J. Biomonitoring of polycyclic aromatic compounds in the urine of mining workers occupationally exposed to diesel exhaust. Int J Hyg Environ Health 2002;204(5-6):333-8. https://doi.org/10.1078/1438-4639-00116
  38. Zhang Q, Yang L, Ma C, Zhang Y, Wu L, Mao H. Emission characteristics and chemical composition of particulate matter emitted by typical non-road construction machinery. Atmos Pollut Res 2020;11(4):679-85. https://doi.org/10.1016/j.apr.2019.12.018
  39. Cui M, Chen Y, Li C, Yin J, Li J, Zheng J. Parent and methyl polycyclic aromatic hydrocarbons and n-alkanes emitted by construction machinery in China. Sci Total Environ 2021;775:144759.
  40. Kakareka SV, Kukharchyk TI. PAH emission from the open burning of agricultural debris. Sci Total Environ 2003;308(1-3):257-61. https://doi.org/10.1016/S0048-9697(02)00650-2
  41. Lai CH, Chen KS, Wang HK. Influence of rice straw burning on the levels of polycyclic aromatic hydrocarbons in agricultural county of Taiwan. J Environ Sci (China) 2009;21(9):1200-7. https://doi.org/10.1016/S1001-0742(08)62404-3
  42. Zhang H, Hu D, Chen J, Ye X, Wang SX, Hao JM, et al. Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning. Environ Sci Technol 2011;45(13):5477-82. https://doi.org/10.1021/es1037904
  43. Moen BE, Nilsson R, Nordlinder R, Ovrebo S, Bleie K, Skorve AH, et al. Assessment of exposure to polycyclic aromatic hydrocarbons in engine rooms by measurement of urinary 1-hydroxypyrene. Occup Environ Med 1996;53(10):692-6. https://doi.org/10.1136/oem.53.10.692
  44. Nilsson R, Nordlinder R, Moen BE, Ovrebo S, Bleie K, Skorve AH, et al. Increased urinary excretion of 8-hydroxydeoxyguanosine in engine room personnel exposed to polycyclic aromatic hydrocarbons. Occup Environ Med 2004;61(8):692-6. https://doi.org/10.1136/oem.2003.007435
  45. Li H, Zeng X, Zhang D, Chen P, Yu Z, Sheng G, et al. Occurrence and carcinogenic potential of airborne polycyclic aromatic hydrocarbons in some large-scale enclosed/semi-enclosed vehicle parking areas. J Hazard Mater 2014;274:279-86. https://doi.org/10.1016/j.jhazmat.2014.04.016
  46. Paschke M, Hutzler C, Brinkmann J, Henkler F, Luch A. Polycyclic aromatic hydrocarbons in newspaper inks: migration, metabolism, and genotoxicity in human skin. Polycycl Aromat Compd 2015;35(1):32-40. https://doi.org/10.1080/10406638.2014.900643
  47. Bruschweiler ED, Danuser B, Huynh CK, Wild P, Schupfer P, Vernez D, et al. Generation of polycyclic aromatic hydrocarbons (PAHs) during woodworking operations. Front Oncol 2012;2:148.
  48. Huynh C, Schupfer P, Boiteux P. Occupational exposure to Polycyclic Aromatic Hydrocarbons in wood dust. J Phys Conf Ser 2009;151:012004.
  49. Cheng K, Li JY, Wang Y, Ji WW, Cao Y. Characterization and risk assessment of airborne polycyclic aromatic hydrocarbons from open burning of municipal solid waste. Front Environ Sci 2022;10:861770.
  50. Rappaport SM, Waidyanatha S, Serdar B. Naphthalene and its biomarkers as measures of occupational exposure to polycyclic aromatic hydrocarbons. J Environ Monit 2004;6(5):413-6. https://doi.org/10.1039/B314088C