Acknowledgement
This work was supported by the National Natural Science Foundation of China [Grant Numbers 52178516, 51925808], the Science and Technology Research and Development Program of China Railway Group Limited [Grant Number 2021-Special-04-2] and the Tencent Foundation or XPLORER PRIZE. The authors are grateful for resources from the High-Performance Computing Center of the Chinese Academy of Sciences (HPC-CAS-Beijing).
References
- Abbas, T., Kavrakov, I., Morgenthal, G. and Lahmer, T. (2020), "Prediction of aeroelastic response of bridge decks using artificial neural networks", Comput. Struct., 231, 106198. https://doi.org/10.1016/j.compstruc.2020.106198.
- Akiba, T., Sano, S., Yanase, T., Ohta, T. and Koyama, M. (2019), "Optuna, A next-generation hyperparameter optimization framework", 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, July.
- Andersen, M.S. and Brandt, A. (2018), "Aerodynamic instability investigations of a novel, flexible and lightweight triple-box girder design for long-span bridges", J. Bridge Eng., 23(12), 04018095. https://doi.org/10.1061/(asce)be.1943-5592.0001317.
- Bernardini, E., Spence, S.M.J., Wei, D. and Kareem, A. (2015), "Aerodynamic shape optimization of civil structures, A CFD-enabled Kriging-based approach", J. Wind Eng. Ind. Aerodyn., 144, 154-164. https://doi.org/10.1016/j.jweia.2015.03.011.
- Brusiani, F., de Miranda, S., Patruno, L., Ubertini, F. and Vaona, P. (2013), "On the evaluation of bridge deck flutter derivatives using RANS turbulence models", J. Wind Eng. Ind. Aerodyn., 119, 39-47. https://doi.org/10.1016/j.jweia.2013.05.002.
- Chen, C.H. (2003), "Determination of flutter derivatives via a neural network approach", J. Sound Vib., 263(4), 797-813. https://doi.org/10.1016/S0022-460X(02)01279-8.
- Chen, C.H., Wu, J.C. and Chen, J.H. (2008), "Prediction of flutter derivatives by artificial neural networks", J. Wind Eng. Ind. Aerodyn., 96(10-11), 1925-1937. https://doi.org/10.1016/j.jweia.2008.02.044.
- Chen, X.Z. and Kareem, A. (2002), "Advances in modeling of aerodynamic forces on bridge decks", J. Eng. Mech., 128(11), 1193-1205. https://doi.org/10.1061/(asce)0733-9399(2002)128:11(1193).
- Chen, Z.S., Xu, Y.M., Huang, H.L. and Tse, K.T. (2020), "Wind tunnel measurement systems for unsteady aerodynamic forces on Bluff Bodies, review and new perspective", Sensors, 20(16), 4633. https://doi.org/10.3390/s20164633.
- Chobsilprakob, P., Kim, K.D., Suthasupradit, S. and Manovachirasan, A. (2014), "Application of indicial function for the flutter analysis of long span suspension bridge during erection", Int. J. Steel Struct., 14(1), 185-194. https://doi.org/10.1007/s13296-014-1016-2.
- Cid Montoya, M., Nieto, F., Hernandez, S., Kusano, I., Alvarez, A.J. and Jurado, J.A. (2018), "CFD-based aeroelastic characterization of streamlined bridge deck cross-sections subject to shape modifications using surrogate models", J. Wind Eng. Ind. Aerodyn., 177, 405-428. https://doi.org/10.1016/j.jweia.2018.01.014.
- Computational Fluid Dynamics Committee (2002), Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, (AIAA G-077-1998), American Institute of Aeronautics and Astronautics, Reston, VA, United States of America.
- Croux, C. and Dehon, C. (2010), "Influence functions of the Spearman and Kendall correlation measures", Stat. Methods Appl., 19(4), 497-515. https://doi.org/10.1007/s10260-010-0142-z.
- Diana, G., Rocchi, D., Argentini, T. and Muggiasca, S. (2010), "Aerodynamic instability of a bridge deck section model, Linear and nonlinear approach to force modeling", J. Wind Eng. Ind. Aerodyn., 98(6-7), 363-374. https://doi.org/10.1016/j.jweia.2010.01.003.
- Ding, F. and Kareem, A. (2018), "A multi-fidelity shape optimization via surrogate modeling for civil structures", J. Wind Eng. Ind. Aerodyn., 178, 49-56. https://doi.org/10.1016/j.jweia.2018.04.022.
- Dong, J.H, Huang, L., Liao, H.L. and Wang, Q. (2021), "Investigation on suppressing vortex-induced vibrations of the rectangular steel box girder for railway cable-stayed bridges by installing wind fairings", J. Wind Eng. Ind. Aerodyn., 219, 104821. https://doi.org/10.1016/j.jweia.2021.104821.
- Forrester, A., Sobester, A. and Keane, A. (2008), Engineering Design via Surrogate Modelling, A Practical Guide, John Wiley & Sons Publication, Chichester, West Susex, United Kingdom.
- Geman, S., Bienenstock, E. and Doursat, R. (1992), "Neural networks and the Bias/Variance dilemma", Neural Comput., 41(1):1-58. https://doi.org/10.1162/neco.1992.4.1.1.
- Haque, M.N., Katsuchi, H., Yamada, H. and Nishio, M. (2016), "Investigation of edge fairing shaping effects on aerodynamic response of long-span bridge deck by unsteady RANS", Arch. Civil Mech. Eng., 16(4), 888-900. https://doi.org/10.1016/j.acme.2016.06.007.
- He, X.H., Li, H., Wang, H.F., Fang, D.X. and Liu, M.T. (2017), "Effects of geometrical parameters on the aerodynamic characteristics of a streamlined flat box girder", J. Wind Eng. Ind. Aerodyn., 170, 56-67. https://doi.org/10.1016/j.jweia.2017.08.009.
- Hu, L.W., Zhang, J., Xiang, Y. and Wang, W.Y. (2020), "Neural networks-based aerodynamic data modeling, A comprehensive review", IEEE Access, 8, 90805-90823. https://doi.org/10.1109/ACCESS.2020.2993562.
- Huang, D.M., He, S.Q., He, X.H. and Zhu, X. (2017), "Prediction of wind loads on high-rise building using a BP neural network combined with POD", J. Wind Eng. Ind. Aerodyn., 170, 1-17. https://doi.org/10.1016/j.jweia.2017.07.021.
- Kareem, A. (2020), "Emerging frontiers in wind engineering, Computing, stochastics, machine learning and beyond", J. Wind Eng. Ind. Aerodyn., 206, 104320. https://doi.org/10.1016/j.jweia.2020.104320.
- Lalonde, E.R., Vischschraper, B., Bitsuamlak, G. and Dai, K.S. (2021), "Comparison of neural network types and architectures for generating a surrogate aerodynamic wind turbine blade model", J. Wind Eng. Ind. Aerodyn., 216, 104696. https://doi.org/10.1016/j.jweia.2021.104696.
- Lampinen, J. and Vehtari, A. (2001), "Bayesian approach for neural networks - Review and case studies", Neural Networks, 14(3), 257-274. https://doi.org/10.1016/S0893-6080(00)00098-8.
- LeCun, Y., Bottou, L., Orr, B.G. and Muller, K.R. (1998), "Efficient BackProp", Neural Networks: Tricks of the Trade Lecture Notes in Computer Science Vol. 7700, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-35289-8_3.
- Li, W.J., Laima, S.J. Jin, X.W. Yuan, W.Y. and Li, H. (2020), "A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations", Nonlinear Dyn., 100(3), 2071-2087. https://doi.org/10.1007/s11071-020-05631-5.
- Li, Y.L, Chen, X.Y., Yu, C.J., Togbenou, K., Wang, B. and Zhu, L.D. (2018), "Effects of wind fairing angle on aerodynamic characteristics and dynamic responses of a streamlined trapezoidal box girder", J. Wind Eng. Ind. Aerodyn., 177 , 69-78. https://doi.org/10.1016/j.jweia.2018.04.006.
- Liao, H.L., Mei, H.Y., Hu, G., Wu, B. and Wang, Q. (2021), "Machine learning strategy for predicting flutter performance of streamlined box girders", J. Wind Eng. Ind. Aerodyn., 209, 104493. https://doi.org/10.1016/j.jweia.2020.104493.
- Lin, P.F., Hu, G., Li, C., Li, L.X. Xiao, Y.Q., Tse, K.T. and Kwok, K.C.S. and Kareem, A. (2022), "Machine learning-enabled estimation of crosswind load effect on tall buildings", J. Wind Eng. Ind. Aerodyn., 220, 104860. https://doi.org/10.1016/j.jweia.2021.104860.
- MacKay D.J.C. (1992), "A practical Bayesian framework for back-propagation networks", Neural Comput., 4(3), 448-472. https://doi.org/10.1162/neco.1992.4.3.448.
- Madhiarasan, M. and Deepa, S. N. (2017), "Comparative analysis on hidden neurons estimation in multi-layer perceptron neural networks for wind speed forecasting", Artif. Intell. Rev., 48(4), 449-471. https://doi.org/10.1007/s10462-016-9506-6.
- Marquardt, D.W. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Ind. Appl. Math., 11(2), 431-441. https://doi.org/doi:10.1137/0111030.
- Moller, M.F. (1993), "A scaled conjugate gradient algorithm for fast supervised learning", Neural Netw., 6(4), 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5.
- Nieto, F., Cid Montoya, M., Hernandez, S., Kusano, I., Casteleiro, A., Alvarez, A.J., Jurado, J.A. and Fontan, A. (2020), "Aerodynamic and aeroelastic responses of short gap twin-box decks, Box geometry and gap distance dependent surrogate based design", J. Wind Eng. Ind. Aerodyn., 201, 104147. https://doi.org/10.1016/j.jweia.2020.104147.
- Parr, J.M., Keane, A.J., Forrester, A.I.J. and Holden, C.M.E. (2012), "Infill sampling criteria for surrogate-based optimization with constraint handling", Eng. Optim., 44(10), 1147-1166. https://doi.org/10.1080/0305215X.2011.637556.
- Pearlmutter, B.A. (1994), "Fast exact multiplication by the Hessian", Neural Comput., 6(1), 147-160. https://doi.org/10.1162/neco.1994.6.1.147.
- Reich, Y. and Barai, S.V. (1999), "Evaluating machine learning models for engineering problems", Artif. Intell. Eng., 13(3), 257-272. https://doi.org/10.1016/S0954-1810(98)00021-1.
- Rizzo, F. and Caracoglia, L. (2020), "Artificial neural network model to predict the flutter velocity of suspension bridges", Comput. Struct., 233, 106236. https://doi.org/10.1016/j.compstruc.2020.106236.
- Sharma, S., Sharma, S. and Anidhya, A. (2020), "Activation functions in neural networks", Int. J. Eng. Appl. Sci. Technol., 4(12), 310-316. https://doi.org/10.33564/IJEAST.2020.v04i12.054
- Wilcox, D.C. (2006), Turbulence Modeling for CFD (3rd Edition), DCW Industries, La Canada, CA, United States of America.
- Wu, T. and Kareem, A. (2011), "Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network", J. Wind Eng. Ind. Aerodyn., 99(4), 378-388. https://doi.org/10.1016/j.jweia.2010.12.011.
- Wu, T., Kareem, A. and Ge, Y.J. (2013), "Linear and nonlinear aeroelastic analysis frameworks for cable-supported bridges", Nonlinear Dyn., 74(3), 487-516. https://doi.org/10.1007/s11071-013-0984-7.
- Xu, G.J., Kareem, A. and Shen, L. (2020), "Surrogate modeling with sequential updating, Applications to bridge deck-wave and bridge deck-wind interactions", J. Comput. Civ. Eng., 34(4), 04020023. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000904.
- Yao, Z.Q., Shen, H.C. and Gao, H. (2013), "A new methodology for the CFD uncertainty analysis", J. Hydrodyn., 25(1), 131-147. https://doi.org/10.1016/S1001-6058(13)60347-9.