DOI QR코드

DOI QR Code

1,700 V급 SiC 기반의 단일 및 이중 트렌치 게이트 전력 MOSFET의 최적 설계 및 전기적 특성 분석

The Optimal Design and Electrical Characteritics of 1,700 V Class Double Trench Gate Power MOSFET Based on SiC

  • 유지연 (극동대학교 에너지IT학과) ;
  • 김동현 (극동대학교 에너지IT학과) ;
  • 이동현 (극동대학교 에너지IT학과) ;
  • 강이구 (극동대학교 에너지IT학과)
  • Ji Yeon Ryou (Department of Energy IT Engineering, Far East University) ;
  • Dong Hyeon Kim (Department of Energy IT Engineering, Far East University) ;
  • Dong Hyeon Lee (Department of Energy IT Engineering, Far East University) ;
  • Ey Goo Kang (Department of Energy IT Engineering, Far East University)
  • 투고 : 2023.04.05
  • 심사 : 2023.05.02
  • 발행 : 2023.07.01

초록

In this paper, the 1,700 V level SiC-based power MOSFET device widely used in electric vehicles and new energy industries was designed, that is, a single trench gate power MOSFET structure and a double trench gate power MOSFET structure were proposed to analyze electrical characteristics while changing the design and process parameters. As a result of comparing and analyzing the two structures, it can be seen that the double trench gate structure shows quite excellent characteristics according to the concentration of the drift layer, and the breakdown voltage characteristics according to the depth of the drift layer also show excellent characteristics of 200 V or more. Among them, the trench gate power MOSFET device can be applied not only to the 1,700 V class but also to a voltage range above it, and it is believed that it can replace all Si devices currently applied to electric vehicles and new energy industries.

키워드

과제정보

본 논문은 한국산업기술진흥원의 산업혁신인재양성사업(P00 17308)과 한국산업기술평가원의 소재부품기술사업(20022501)의 지원에 의하여 수행되었음.

참고문헌

  1. B. S. Ahn, H. S. Chung, E. S. Jung, S. J. Kim, and E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 187 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.3.187]
  2. J. M. Geum, E. S. Jung, E. G. Kang, and M. Y. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 253 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.4.253]
  3. K. Sano and S. Kurihara, Phys. C, 352, 223 (2001). [DOI: https://doi.org/10.1016/S0921-4534(00)01730-5]
  4. E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 497 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.8.497]
  5. M. C. Shin, H. S. Chung, B. S. Ahn, H. F. Cui, S. Y. Kim, and E. G. Kang, J. Nanosci. Nanotechnol., 19, 1670, (2019). [DOI: https://doi.org/10.1166/jnn.2019.16207]
  6. E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 210 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.4.210]
  7. H. S. Chung and E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 496 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.8.496]
  8. Y. S. Jeong and S. M. Koo, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 345 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.6.345]
  9. J. H. Kim and K. S. Kim, Inst. Korean Electr. Electron. Eng., 23, 756 (2019). [DOI: https://doi.org/10.7471/ikeee.2019.23.3.756]