DOI QR코드

DOI QR Code

웨어러블 응용을 위한 섬유형 슈퍼커패시터

Fiber Based Supercapacitors for Wearable Application

  • 이재명 (동국대학교 융합에너지신소재공학과) ;
  • 손원경 (동국대학교 융합에너지신소재공학과) ;
  • 김주완 (동국대학교 융합에너지신소재공학과) ;
  • 노준호 (동국대학교 융합에너지신소재공학과) ;
  • 오명은 (동국대학교 융합에너지신소재공학과) ;
  • 최진형 (동국대학교 융합에너지신소재공학과) ;
  • 최창순 (동국대학교 융합에너지신소재공학과)
  • Jae Myeong Lee (Department of Energy and Materials Engineering, Dongguk University) ;
  • Wonkyeong Son (Department of Energy and Materials Engineering, Dongguk University) ;
  • Juwan Kim (Department of Energy and Materials Engineering, Dongguk University) ;
  • Jun Ho Noh (Department of Energy and Materials Engineering, Dongguk University) ;
  • Myoungeun Oh (Department of Energy and Materials Engineering, Dongguk University) ;
  • Jin Hyeong Choi (Department of Energy and Materials Engineering, Dongguk University) ;
  • Changsoon Choi (Department of Energy and Materials Engineering, Dongguk University)
  • 투고 : 2023.04.28
  • 심사 : 2023.05.25
  • 발행 : 2023.07.01

초록

Flexible fiber- or yarn-based one-dimensional (1-D) energy storage devices are essential for developing wearable electronics and have thus attracted considerable attention in various fields including ubiquitous healthcare (U-healthcare) systems and textile platforms. 1-D supercapacitors (SCs), in particular, are recognized as one of the most promising candidates to power wearable electronics due to their unique energy storage and high adaptability for the human body. They can be woven into textiles or effectively designed into diverse architectures for practical use in day-to-day life. This review summarizes recent important development and advances in fiber-based supercapacitors, concerning the active materials, fiber configuration, and applications. Active materials intended to enhance energy storage capability including carbon nanomaterials, metal oxides, and conductive polymers, are first discussed. With their loading methods for fiber electrodes, a summary of the four main types of fiber SCs (e.g., coil, supercoil, buckle, and hybrid structures) is then provided, followed by demonstrations of some practical applications including wearability and power supplies. Finally, the current challenges and perspectives in this field are made for future works.

키워드

과제정보

이 논문은 2023년도 정부의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임(No.RS-2023-00240008).

참고문헌

  1. B. K. Sharma and J. H. Ahn, Adv. Electron. Mater., 2, 1600105 (2016). [DOI: https://doi.org/10.1002/aelm.201600105]
  2. Y. Shao, M. F. El-Kady, L. J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi, and R. B. Kaner, Chem. Soc. Rev., 44, 3639 (2015). [DOI: https://doi.org/10.1039/C4CS00316K]
  3. J. A. Rogers, T. Someya, and Y. Huang, Science, 327, 1603 (2010). [DOI: https://doi.org/10.1126/science.1182383]
  4. J. E. Muck, B. unal, H. Butt, and A. K. Yetisen, Trends Biotechnol., 37, 563 (2019). [DOI: https://doi.org/10.1016/j.tibtech.2019.02.001]
  5. K. Guk, G. Han, J. Lim, K. Jeong, T. Kang, E. K. Lim, and J. Jung, Nanomaterials, 9, 813 (2019). [DOI: https://doi.org/10.3390/nano9060813]
  6. Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, and C. Zhi, Small, 13, 1701827 (2017). [DOI: https://doi.org/10.1002/smll.201701827]
  7. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer Science & Business Media, 2013).
  8. S. Pan, J. Ren, X. Fang, and H. Peng, Adv. Energy Mater., 6, 1501867 (2016). [DOI: https://doi.org/10.1002/aenm.201501867]
  9. N. M. Farandos, A. K. Yetisen, M. J. Monteiro, C. R. Lowe, and S. H. Yun, Adv. Healthcare Mater., 4, 792 (2015). [DOI: https://doi.org/10.1002/adhm.201400504]
  10. S. Han, M. K. Kim, B. Wang, D. S. Wie, S. Wang, and C. H. Lee, Adv. Mater., 28, 10257 (2016). [DOI: https://doi.org/10.1002/adma.201603878]
  11. N. Starliper, F. Mohammadzadeh, T. Songkakul, M. Hernandez, A. Bozkurt, and E. Lobaton, Sensors, 19, 441 (2019). [DOI: https://doi.org/10.3390/s19030441]
  12. H. W. Chun and I. K. You, Electron. Telecommun. Trends, 29, 186 (2014).
  13. C. Choi, D. S. Ashby, D. M. Butts, R. H. DeBlock, Q. Wei, J. Lau, and B. Dunn, Nat. Rev. Mater., 5, 5 (2020). [DOI: https://doi.org/10.1038/s41578-019-0142-z]
  14. J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, and C. M. Li, J. Power Sources, 401, 213 (2018). [DOI: https://doi.org/10.1016/j.jpowsour.2018.08.090]
  15. M. R. Islam, S. Afroj, K. S. Novoselov, and N. Karim, Adv. Sci., 9, 2203856 (2022). [DOI: https://doi.org/10.1002/advs.202203856]
  16. M. S. Halper and J. C. Ellenbogen, The MITRE Corporation, McLean, Virginia, USA, 1 (2006).
  17. M. Setayeshmehr, M. Haghighi, and K. Mirabbaszadeh, Energy Storage, 4, e295 (2022). [DOI: https://doi.org/10.1002/est2.295]
  18. S. W. Zhang and G. Z. Chen, Energy Mater., 3, 186 (2008). [DOI: https://doi.org/10.1179/174892409X427940]
  19. M. S. Son and J. H. Ryu, Clean Technol., 27, 277 (2021). [DOI: https://doi.org/10.7464/ksct.2021.27.4.277]
  20. M. Wayu, Solids, 2, 232 (2021). [DOI: https://doi.org/10.3390/solids2020015]
  21. X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, and H. Peng, Adv. Mater., 25, 6436 (2013). [DOI: https://doi.org/10.1002/adma.201301519]
  22. Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, and L. Qu, Adv. Mater., 25, 2326 (2013). [DOI: https://doi.org/10.1002/adma.201300132]
  23. Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, and L. Qu, Nanoscale, 6, 6448 (2014). [DOI: https://doi.org/10.1039/C4NR01220H]
  24. S. Chen, W. Ma, Y. Cheng, Z. Weng, B. Sun, L. Wang, W. Chen, F. Li, M. Zhu, and H. M. Cheng, Nano Energy, 15, 642 (2015). [DOI: https://doi.org/10.1016/j.nanoen.2015.05.004]
  25. B. Wang, X. Fang, H. Sun, S. He, J. Ren, Y. Zhang, and H. Peng, Adv. Mater., 27, 7854 (2015). [DOI: https://doi.org/10.1002/adma.201503441]
  26. V. T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q. A. Vu, D. T. Pham, J. H. Lee, S. W. Kim, and Y. H. Lee, ACS Nano, 7, 5940 (2013). [DOI: https://doi.org/10.1021/nn4016345]
  27. N. Kularatna, K. Subasinghage, K. Gunawardane, D. Jayananda, and T. Ariyarathna, Electronics, 10, 1697 (2021). [DOI: https://doi.org/10.3390/electronics10141697]
  28. J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, and H. Peng, Adv. Mater., 25, 1155 (2013). [DOI: https://doi.org/10.1002/adma.201203445]
  29. W. Ma, S. Chen, S. Yang, W. Chen, Y. Cheng, Y. Guo, S. Peng, S. Ramakrishna, and M. Zhu, J. Power Sources, 306, 481 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2015.12.063]
  30. D. Yu, K. Goh, Q. Zhang, L. Wei, H. Wang, W. Jiang, and Y. Chen, Adv. Mater., 26, 6790 (2014). [DOI: https://doi.org/10.1002/adma.201403061]
  31. M. Y. Chung and C. T. Lo, Electrochim. Acta, 364, 137324 (2020). [DOI: https://doi.org/10.1016/j.electacta.2020.137324]
  32. G. Sun, J. Liu, X. Zhang, X. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, and P. Chen, Angew. Chem. Int. Ed., 53, 12576 (2014). [DOI:https://doi.org/10.1002/anie.201405325]
  33. J. A. Lee, M. K. Shin, S. H. Kim, S. J. Kim, G. M. Spinks, G. G. Wallace, R. Ovalle-Robles, M. D. Lima, M. E. Kozlov, and R. H. Baughman, ACS Nano, 6, 327 (2012). [DOI: https://doi.org/10.1021/nn203640a]
  34. J. A. Lee, M. K. Shin, S. H. Kim, H. U. Cho, G. M. Spinks, G. G. Wallace, M. D. Lima, X. Lepro, M. E. Kozlov, R. H. Baughman, and S. J. Kim, Nat. Commun., 4, 1970 (2013). [DOI: https://doi.org/10.1038/ncomms2970]
  35. N. Liu, W. Ma, J. Tao, X. Zhang, J. Su, L. Li, C. Yang, Y. Gao, D. Golberg, and Y. Bando, Adv. Mater., 25, 4925 (2013). [DOI: https://doi.org/10.1002/adma.201301311]
  36. K. Wang, Q. Meng, Y. Zhang, Z. Wei, and M. Miao, Adv. Mater., 25, 1494 (2013). [DOI: https://doi.org/10.1002/adma.201204598]
  37. W. Zhu, Y. Zhang, X. Zhou, J. Xu, Z. Liu, N. Yuan, and J. Ding, Nanoscale Res. Lett., 12, 448 (2017). [DOI: https://doi.org/10.1186/s11671-017-2215-5]
  38. Y. Cao, H. Zhang, Y. Zhang, Z. Yang, D. Liu, H. Fu, Y. Zhang, M. Liu, and Q. Li, Energy Storage Mater., 49, 102 (2022). [DOI: https://doi.org/10.1016/j.ensm.2022.03.011]
  39. C. Choi, J. A. Lee, A. Y. Choi, Y. T. Kim, X. Lepro, M. D. Lima, R. H. Baughman, and S. J. Kim, Adv. Mater., 26, 2059 (2014). [DOI: https://doi.org/10.1002/adma.201304736]
  40. J. Zhang, X. Zhao, Z. Huang, T. Xu, and Q. Zhang, Carbon, 107, 844 (2016). [DOI: https://doi.org/10.1016/j.carbon.2016.06.064]
  41. A. Rafique, A. Massa, M. Fontana, S. Bianco, A. Chiodoni, C. F. Pirri, S. Hernandez, and A. Lamberti, ACS Appl. Mater. Interfaces, 9, 28386 (2017). [DOI: https://doi.org/10.1021/acsami.7b06311]
  42. Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen, and L. Qu, J. Power Sources, 247, 32 (2014). [DOI: https://doi.org/10.1016/j.jpowsour.2013.08.045]
  43. J. H. Kim, C. Choi, J. M. Lee, M. J. de Andrade, R. H. Baughman, and S. J. Kim, Sci. Rep., 8, 13309 (2018). [DOI: https://doi.org/10.1038/s41598-018-31611-2]
  44. J. H. Jeong, J. W. Park, D. W. Lee, R. H. Baughman, and S. J. Kim, Sci. Rep., 9, 11271 (2019). [DOI: https://doi.org/10.1038/s41598-019-47744-x]
  45. C. Choi, J. W. Park, K. J. Kim, D. W. Lee, M. J. De Andrade, S. H. Kim, S. Gambhir, G. M. Spinks, R. H. Baughman, and S. J. Kim, RSC Adv., 8, 13112 (2018). [DOI: https://doi.org/10.1039/C8RA01384E]
  46. D. W. Lee, S. Yu, J. Kim, and C. Choi, Sens. Actuators, A, 342, 113623 (2022). [DOI: https://doi.org/10.1016/j.sna.2022.113623]
  47. H. J. Sim, C. Choi, D. Y. Lee, H. Kim, J. H. Yun, J. M. Kim, T. M. Kang, R. Ovalle, R. H. Baughman, C. W. Kee, and S. J. Kim, Nano Energy, 47, 385 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.03.011]
  48. Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang, A. Levitt, N. Li, C. Haines, R. Ovalle-Robles, W. Lei, Y. Gogotsi, R. H. Baughman, and J. M. Razal, Small, 14, 1802225 (2018). [DOI: https://doi.org/10.1002/smll.201802225]
  49. Y. Shang, X. He, Y. Li, L. Zhang, Z. Li, C. Ji, E. Shi, P. Li, K. Zhu, Q. Peng, C. Wang, X. Zhang, R. Wang, J. Wei, K. Wang, H. Zhu, D. Wu, and A. Cao, Adv. Mater., 24, 2896 (2012). [DOI: https://doi.org/10.1002/adma.201200576]
  50. C. Choi, H. J. Sim, G. M. Spinks, X. Lepro, R. H. Baughman, and S. J. Kim, Adv. Energy Mater., 6, 1502119 (2016). [DOI: https://doi.org/10.1002/aenm.201502119]
  51. C. Choi, K. M. Kim, K. J. Kim, X. Lepro, G. M. Spinks, R. H. Baughman, and S. J. Kim, Nat. Commun., 7, 13811 (2016). [DOI: https://doi.org/10.1038/ncomms13811]
  52. W. Son, S. Chun, J. M. Lee, G. Jeon, H. J. Sim, H. W. Kim, S. B. Cho, D. Lee, J. Park, J. Jeon, D. Suh, and C. Choi, ACS Nano, 16, 2661 (2022). [DOI: https://doi.org/10.1021/acsnano.1c09465]
  53. J. H. Choi, J. H. Noh, and C. Choi, Sensors, 23, 2359 (2023). [DOI: https://doi.org/10.3390/s23042359]
  54. C. Choi, S. H. Kim, H. J. Sim, J. A. Lee, A. Y. Choi, Y. T. Kim, X. Lepro, G. M. Spinks, R. H. Baughman, and S. J. Kim, Sci. Rep., 5, 9387 (2015). [DOI: https://doi.org/10.1038/srep09387]
  55. W. Son, S. Chun, J. M. Lee, Y. Lee, J. Park, D. Suh, D. W. Lee, H. Jung, Y. J. Kim, Y. Kim, S. M. Jeong, S. K. Lim, and C. Choi, Nat. Commun., 10, 426 (2019). [DOI: https://doi.org/10.1038/s41467-018-08016-w]
  56. W. Son, J. M. Lee, J. H. Choi, D. Suh, and C. Choi, Sens. Actuators, B, 373, 132775 (2022). [DOI: https://doi.org/10.1016/j.snb.2022.132775]
  57. C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, Adv. Mater., 21, 4793 (2009). [DOI: https://doi.org/10.1002/adma.200901775]
  58. S. Yu, W. Son, G. Jeon, J. Kim, J. You, S. Ko, and C. Choi, Composites, Part B, 256, 110664 (2023). [DOI: https://doi.org/10.1016/j.compositesb.2023.110664]
  59. H. Wang, Z. Liu, J. Ding, X. Lepro, S. Fang, N. Jiang, N. Yuan, R. Wang, Q. Yin, W. Lv, Z. Liu, M. Zhang, R. Ovalle-Robles, K. Inoue, S. Yin, and R. H. Baughman, Adv. Mater., 28, 4998 (2016). [DOI:https://doi.org/10.1002/adma.201600405]
  60. T. Chen, R. Hao, H. Peng, and L. Dai, Angew. Chem. Int. Ed., 54, 618 (2015). [DOI: https://doi.org/10.1002/anie.201409385]
  61. C. Choi, J. M. Lee, S. H. Kim, S. J. Kim, J. Di, and R. H. Baughman, Nano Lett., 16, 7677 (2016). [DOI: https://doi.org/10.1021/acs.nanolett.6b03739]
  62. D. W. Lee, J. H. Lee, N. K. Min, and J. H. Jin, Sci. Rep., 7, 12005 (2017). [DOI: https://doi.org/10.1038/s41598-017-12375-7]
  63. C. Choi, J. H. Kim, H. J. Sim, J. Di, R. H. Baughman, and S. J. Kim, Adv. Energy Mater., 7, 1602021 (2017). [DOI: https://doi.org/10.1002/aenm.201602021]
  64. Y. Shang, C. Wang, X. He, J. Li, Q. Peng, E. Shi, R. Wang, S. Du, A. Cao, and Y. Li, Nano Energy, 12, 401 (2015). [DOI: https://doi.org/10.1016/j.nanoen.2014.11.048]
  65. Z. Zhang, J. Deng, X. Li, Z. Yang, S. He, X. Chen, G. Guan, J. Ren, and H. Peng, Adv. Mater., 27, 356 (2015). [DOI: https://doi.org/10.1002/adma.201404573]
  66. Z. Lu, J. Foroughi, C. Wang, H. Long, and G. G. Wallace, Adv. Energy Mater., 8, 1702047 (2018). [DOI: https://doi.org/10.1002/aenm.201702047]