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ABSTRACT. Disordered eating behaviors, such as overeating, are known to be contagious in
the general population. The objective of our research is to find an optimal control strategy
to reduce the social burden of unhealthy overeating behavior by establishing and analyzing a
mathematical model for the social transmission dynamics of unhealthy overeating. We con-
sider four compartments in the population: normal weight with normal eating behavior, normal
weight with overeating behavior, overweight with normal eating behavior, and overweight with
overeating behavior. Simulation results under various control scenarios show that integrated
control measures may be necessary to reduce the growth rate of the overeating population.

1. INTRODUCTION

Obesity prevalence has become one of the most prominent issues in global public health
[1, 2]. Obesity can be considered a socially transmitted disease, meaning that the social and
cultural environment a person inhabits can influence their risk of becoming obese. There are
several papers that have used mathematical models to study the dynamics of the obese popula-
tion. These models can be useful for understanding the factors that contribute to the develop-
ment of obesity, as well as for evaluating the impact of different interventions to prevent and
treat obesity [3, 4, 5, 6, 7, 8].

The complete mechanism behind the social contagion of obesity has not been fully elu-
cidated, but the scientific evidence for social contagion is accumulating [9, 10, 11, 12]. In
this paper, we especially focus on the fact that social factors can play a significant role in the
development and persistence of overeating patterns and ultimately obesity. The objective of
our research is to find optimal intervention strategies to reduce the social burden of unhealthy
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overeating behavior by establishing and analyzing a mathematical model for the social trans-
mission dynamics of unhealthy overeating.

2. FORMULATION OF THE MODEL

Comparing the population group with overeating habits with normal eating behaviors. we
modify Wang’s model [13] and Oh’s model [14] for eating behavior transmission as follows:

We divide the population into four groups SN , SO, IN , IO. The susceptible groups SN , SO,
are those in which all individuals report normal eating behaviors but can be socially induced to
become overeating. The SN and SO groups are individuals with normal weights and those that
are overweights/obese, respectively. The infectious group IN and IO both exhibit overeating
behaviors and have normal weights and are overweights/obese, respectively. Figure 1 shows
the schematic diagram of our model.

FIGURE 1. Schematic diagram for the model

And its mathematical formulations are
dSN

dt
= µpq − βN (IN + aIO)SN − µSN + δ(SO − SN )

dSO

dt
= µ(1− p)q − µSO − βO(IN + aIO)SO + δ(SN − SO)

dIN
dt

= µp(1− q) + βN (IN + aIO)SN − (µ+ γ)IN

dIO
dt

= µ(1− p)(1− q) + γIN + βO(IN + aIO)SO − µIO,

(2.1)

where SN + SO + IN + IO = 1.
The variable domain of the model is

Ω = {(SN , SO, IN , IO) ∈ R4 | 0 ≤ SN , SO, IN , IO ≤ 1}.
In the model, the parameters βN , βO, a, δ, and γ are positive constants. The parameter µ is

the recruitment rate of the population, with proportions p recruited to the normal BMI category
SN∪IN and 1−p to the overweight/obese category SO∪IO. We further assume that the normal
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BMI category splits with fractions q for category SN and 1 − q for category IN , and that the
overweight/obese population is also divided into proportions of q and 1 − q to the category
SO and IO, respectively. Social contact levels of the susceptible population with normal and
overweight/obese overeating behaviors are βN and βO, respectively. Last, we assume that IN is
more strongly infectious than IO since the IN population are not obese despite their overeating
behavior.

As in [13], we consider the weight coefficient 0 ≤ a ≤ 1 of IN , which represents the
relative intensity of overeating behaviors for susceptible individuals with normal BMI, and
also considers the random transition in the combined group S due to random perturbations in
the transition rate δ. Transition in the group I is directed from IN to IO with transition rate γ.

3. DISEASE-FREE EQUILIBRIUM AND BASIC REPRODUCTIVE NUMBER

3.1. Disease-free equilibrium. We easily find the disease free equilibrium point (S∗
N , S∗

O, 0, 0),
where

S∗
N =

µp+ δ

µ+ 2δ
and S∗

O =
{µ(1− p) + δ}

µ+ 2δ
.

We note that the disease free equilibrium point exists only when q = 1.

3.2. Basic reproductive number. The basic reproductive number R0 is a measure of the aver-
age number of secondary cases generated by a single primary case in a completely susceptible
population [15]. The value of R0 can be calculated using the spectral radius of the next-
generation matrix of a model: where ρ is defined as the spectral radius of the next-generation
matrix FV−1, F is the rate of occurrence of new infections in class i, and V is the transfer of
individuals out of class i by all other means [16].

We denote a new infection and the remainder by the matrices F and V , respectively.
Then, in the model (2.1), we have

F =

[
βN (IN + aIO)SN

βO(IN + aIO)SO

]
and V =

[
−µp(1− q) + (µ+ γ)IN

−µ(1− p)(1− q)− γIN + µIO

]
.

Now we compute the matrices F and V by evaluating the Jacobian matrices [∂Fi/∂xj ] and
[∂Vi/∂xj ] at the disease-free equilibrium point. Since the disease-free equilibrium point in the
model (2.1) is E∗ = (S∗

N , S∗
O, 0, 0), we have

F =

[
βNS∗

N aβNS∗
N

βOS
∗
O aβOS

∗
O

]
and V =

[
µ+ γ 0
−γ µ

]
,

Then we obtain the dominant eigenvalue of FV−1, which gives

R0 = ρ(FV−1) =
(µ+ aγ)βNS∗

N + aβOS
∗
O(µ+ γ)

µ(γ + µ)
.

But since

S∗
N =

µp+ δ

µ+ 2δ
and S∗

O =
{µ(1− p) + δ}

µ+ 2δ
,
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we have

R0 =
βN (µ+ aγ)(µp+ δ) + aβO(µ+ γ){µ(1− p) + δ}

µ(µ+ γ)(µ+ 2δ)
.

Initial transmission is directly related to the basic reproductive number. Sensitivity indices
allow us to measure the relative change in a variable when a parameter changes. When the
variable is the differentiable function of parameters, the sensitivity index may be alternatively
defined using partial derivatives. By the use R0, the sensitivities are parameters; βN , βO, γ.

SβN
=

∂R0

∂βN

βN
R0

= 1− aβO(µ+ γ){µ(1− p) + δ}
βN (µ+ aγ)(µp+ δ) + aβO(µ+ γ){µ(1− p) + δ}

,

SβO
=

∂R0

∂βO

βO
R0

= 1− βN (µ+ aγ)(µp+ δ)

βN (µ+ aγ)(µp+ δ) + aβO(µ+ γ){µ(1− p) + δ}
,

Sγ =
∂R0

∂γ

γ

R0
=

βNµ2γ(a− 1)(µp+ δ)(µ+ 2δ)

βN (µ+ aγ)(µp+ δ) + aβO(µ+ γ){µ(1− p) + δ}
.

Analyzing the individual parameter sensitivities reveals that an elevated value of βN corre-
sponds to an augmentation in SβN

, while a higher value of βO corresponds to an increase in
SβO

. Furthermore, an increase in γ leads to a proportional increase in Sγ . Consequently, the
sensitivity escalates with the augmentation of each parameter.

4. OPTIMAL CONTROL

In our model (2.1), we adopt the time-dependent controls u1(t) and u2(t) corresponding to
βN and βO, respectively. The control variables 0 ≤ u1(t), u2(t) ≤ 1 represent the amount of
intervention at time t to reduce social contact with groups exhibiting the overeating behavior.

We replace the social contact rates βN and βO by (1 − u1(t))βN and by (1 − u2(t))βO,
respectively. Then the controlled model is as follows:

dSN

dt
= µpq − βN (1− u1(t))(IN + aIO)SN − µSN + δ(SO − SN )

dSO

dt
= µ(1− p)q − µSO − βO(1− u2(t))(IN + aIO)SO + δ(SN − SO)

dIN
dt

= µp(1− q) + βN (1− u1(t))(IN + aIO)SN − (µ+ γ)IN

dIO
dt

= µ(1− p)(1− q) + γIN + βO(1− u2(t))(IN + aIO)SO − µIO.

(4.1)

Here we note that, in model system (4.1), the effective reproductive number Rt is

SN (t)
βN (1− u1(t))(µ+ aγ)(µp+ δ) + aβO(1− u2(t))(µ+ γ){µ(1− p) + δ}

µ(µ+ γ)(µ+ 2δ)
.

An optimal control problem with the objective cost functional can be given

J(u1, u2) =

∫ T

0

[
A1IN (t) +A2IO(t) +

B1

2
u21(t) +

B2

2
u22(t)

]
dt (4.2)
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subject to the state system given by (4.1).
In the objective functional (4.2), the quantities A1 and A2 represent the weight constants

of the groups with normal overeating and obese overeating behaviors respectively, while the
weight coefficients B1 and B2 are constants that represent cost sizes for the controls u1 and
u2 respectively. The terms 1

2B1u
2
1 and 1

2B2u
2
2 describe the costs associated with transmission

by social contact rate for the groups with normal and obese overeating behaviors and with an
educational/warning campaign about obesity for minimization of the obese population, respec-
tively.

To solve the optimal control problem (4.1) and (4.2), we need to find a pair (u∗1, u
∗
2) of

optimal functions such that

J(u∗1, u
∗
2) = min{J(u1, u2)|(u1, u2) ∈ U}

subject to the state system given by (4.1), where the control set is defined as

U = {(u1, u2)| u1 and u2 are Lebesgue measurable functions from [0, T ] to [0, 1]}.

We define the Hamiltonian H for the control problem as follows:

H(t,X(t),U(t),Λ(t))

= A1IN (t) +A2IO(t) +
B1

2
u21(t) +

B2

2
u22(t) +Λ(t)

(
dX(t)

dt

)T

= A1IN (t) +A2IO(t) +
B1

2
u21(t) +

B2

2
u22(t)

+ λ1(t)[µpq − βN (1− u1(t))(IN + aIO)SN − µSN + δ(SO − SN )]

+ λ2(t)[µ(1− p)q − µSO − βO(1− u2(t))(IN + aIO)SO + δ(SN − SO)]

+ λ3(t)[µp(1− q) + βN (1− u1(t))(IN + aIO)SN − (µ+ γ)IN ]

+ λ4(t)[µ(1− p)(1− q) + γIN + βO(1− u2(t))(IN + aIO)SO − µIO],

(4.3)

where the adjoint variables are defined by Λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t)) and the state
variables are denoted by X(t) = (SN (t), SO(t), IN (t), IO(t)).

For the necessary condition of our control problem, we state and prove the following theo-
rem:

Theorem 4.1. Let S∗
N (t), S∗

O(t), I
∗
N (t) and I∗O(t) be the optimal state solutions with the as-

sociated optimal control variables u∗1 and u∗2 for the optimal control problem (4.1) and (4.2).
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Then, there exist adjoint variables λ1(t), λ2(t), λ3(t) and λ4(t) that satisfy

λ′
1(t) = (λ1(t)− λ3(t))βN (1− u∗1(t))(I

∗
N (t) + aI∗O(t)) + (λ1(t)− λ2(t))δ + λ1(t)µ

λ′
2(t) = (λ2(t)− λ4(t))βO(1− u∗2(t))(I

∗
N (t) + aI∗O(t)) + (λ2(t)− λ1(t))δ + λ2(t)µ

λ′
3(t) = −A1 + (λ1(t)− λ3(t))βN (1− u∗1(t))S

∗
N (t) + (λ2(t)− λ4(t))βO(1− u∗2(t))S

∗
O(t)

+ (λ3(t)− λ4(t))γ + λ3(t)µ

λ′
4(t) = −A2 + (λ1(t)− λ3(t))aβN (1− u∗1(t))S

∗
N (t) + (λ2(t)− λ4(t))aβO(1− u∗2(t))S

∗
O(t)

+ λ4(t)µ

with transversality conditions (or boundary conditions)

λj(T ) = 0, i = 1, 2, 3, 4.

Furthermore, the optimal controls u∗1 and u∗2 are given by

u∗1(t) = min

{
1,max

{
0,

1

B1
(λ3(t)− λ1(t))βN (I∗N (t) + aI∗O(t))S

∗
N (t)

}}
,

u∗2(t) = min

{
1,max

{
0,

1

B2
(λ4(t)− λ2(t))βO(I

∗
N (t) + aI∗O(t))S

∗
O(t)

}}
.

(4.4)

Proof. To determine the adjoint equations and the transversality conditions, we used the
Hamiltonian (4.3). By Pontryagin’s Maximum Principle, setting S∗

N (t), S∗
O(t), I

∗
N (t) and I∗O(t)

and also differentiating the Hamiltonian (4.3) with respect to S∗
N (t), S∗

O(t), I
∗
N (t) and I∗O(t),

we obtain
∂H
∂SN

= (λ3(t)− λ1(t))βN (1− u∗1(t))(I
∗
N (t) + aI∗O(t)) + (λ2(t)− λ1(t))δ − λ1(t)µ

∂H
∂SO

= (λ4(t)− λ2(t))βO(1− u∗2(t))(I
∗
N (t) + aI∗O(t)) + (λ1(t)− λ2(t))δ − λ2(t)µ

∂H
∂IN

= A1 + (λ3(t)− λ1(t))βN (1− u∗1(t))S
∗
N (t) + (λ4(t)− λ2(t))βO(1− u∗2(t))S

∗
O(t)

+ (λ4(t)− λ3(t))γ − λ3(t)µ

∂H
∂IO

= A2 + (λ3(t)− λ1(t))aβN (1− u∗1(t))S
∗
N (t) + (λ4(t)− λ2(t))aβO(1− u∗2(t))S

∗
O(t)

− λ4(t)µ

The costate equations are

λ′
1(t) = − ∂H

∂SN
, λ′

2(t) = − ∂H
∂SO

, λ′
3(t) = − ∂H

∂IN
, λ′

4(t) = − ∂H
∂IO

.

To obtain the optimal controls (4.4), we also differentiate the Hamiltonian H with respect to
u1, u2 and set it equal to zero.
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0 =
∂H
∂u∗1

= B1u
∗
1(t) + (λ1(t)− λ3(t))βN (I∗N + aI∗O)S

∗
N (t)

0 =
∂H
∂u∗2

= B2u
∗
2(t) + (λ2(t)− λ4(t))βO(I

∗
N + aI∗O)S

∗
O(t).

(4.5)

Solving for the optimal controls, we obtain

u∗1(t) =
1

B1
(λ3(t)− λ1(t))βN (I∗N + aI∗O)S

∗
N (t)

u∗2(t) =
1

B2
(λ4(t)− λ2(t))βO(I

∗
N + aI∗O)S

∗
O(t).

(4.6)

To determine an explicit expression for the optimal controls for 0 ≤ u∗1 ≤ 1 and 0 ≤ u∗2 ≤ 1,
we utilize a standard optimality technique, then we obtain characterizations of u∗1 and u∗2:

u∗1(t) = min

{
1,max

{
0,

1

B1
(λ3(t)− λ1(t))βN (I∗N + aI∗O)S

∗
N (t)

}}
and

u∗2(t) = min

{
1,max

{
0,

1

B2
(λ4(t)− λ2(t))βO(I

∗
N + aI∗O)S

∗
O(t)

}}
.

Q.E.D.□

5. NUMERICAL RESULTS

Our goal is to find intervention strategies to prevent people from becoming obese. We sim-
ulated the different scenarios using the forward-backward sweep method [17].

All parameter values used in the numerical simulations were estimated based on [13]. The
parameters values are a = 0.7; p = 0.85; q = 0.05; µ = 1

70+365/7 = 0.0002739726; βN =

0.02; βO = 0.05; δ = 0.001; γ = 0.002899976. We chose 0.7 as the upper bound for
u∗1 and u∗2 due to a person’s tolerance. We simulated our model by setting the default values
of the weight variables to A1 = 0.1, A2 = 0.1, B1 = 0.1 and B2 = 0.1 with initial states
SN = 0.5, SO(0) = 0.3, IN (0) = 0.1 and IO(0) = 0.1.

We simulated four control scenarios to minimize overweight/obese populations in the model.
Figure 2 shows the simulations for the four interventions, which are A1 = A2 = 0.1, A1 =
0.1;A2 = 1.0, A1 = 1.0;A2 = 0.1 and A1 = A2 = 1.0. The green dotted lines in Fig. 2(c)
and (d) are the cases where IN and IO, respectively are not controlled. When not controlled,
IN tends to increase significantly to about 108 and then decreases gradually. The value of IO
tends to increase constantly with no control. From Fig. 2, our simulation results show how
the trends of IN , IO and the two control variables u∗1, u

∗
2 change when controlled with our four

scenarios.
First, the solid blue line in Fig. 2 shows the simulation result when A1 = A2 = 0.1.

When we want to minimize the objective cost functional, u∗1 has maximum control only at the
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FIGURE 2. Comparison according to changes in values of A1, and A2

beginning, and u∗2 has little control initially. And as a result, the effect of reducing IN and IO
is relatively low.

Hence the simulation results show that if the weights of IN and IO are given equally as 0.1,
a strong reduction effect for the infectious group by controlling u∗1, u

∗
2 cannot be expected.

We suggest a variation in the scenario involving the weights A1 and A2. Second, Fig. 2
illustrates the scenario where we select A1 = A2 = 1.0 on one side and A1 = 0.1, A2 = 1.0
on the other; the plots are the yellow and red curves of Fig. 2 respectively. Both yellow and
red curves of IN show almost the same trend of about 280 hours, but IN does not decrease in
the control condition as it does in non-control after about 280 hours. In this case, u∗1 maintains
maximum control until about 280 hours for the red curve and longer for the yellow line. The
maximum implementations of the control u∗2 are both 0.7. Due to the implementation of con-
trol, the overweight/obese population IO is well controlled as shown in Fig. 2(d). The strong
effect of reducing the infectious group by controlling u∗2 can be expected for a relatively long
time.

In the case of IO, we can see in Fig. 2(d) that the yellow and red curves show almost the
same trend from the beginning. This shows the same effect in controlling A1 = A2 = 1.0 as
in only controlling A2 = 1.0. In this case, A1 and A2 do not need to be heavily weighted.

Last, when A1 = 1.0 and A2 = 0.1 both IN and IO experience a greater reduction effect
than the baseline value 0.1. For the black lines in Fig. 2(c) and (d), the state IN is well
controlled before 280 but loses this effect after that time. The maximum initial implementation
of u∗1 is 0.7, maintained until about 280. When A1 = 1.0 and A2 = 0.1, the state IO has
considerably less control than when A1 = A2 = 1.0 or only A2 = 1.0. In this case, u∗2 has
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maximum control of about 0.44 at the beginning and rapidly decreases. The state IO is steadily
controlled, but the reduction effect is not as strong (Fig. 2(d)).

From the above four analyses, IN is successfully controlled to about 280 for three control
scenarios, while IO is controlled over the long term for all four. To achieve high effectiveness
in reducing infectious, the long-term control is required for u∗2.

100 200 300 400 500
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A1=A2=0.1

A1=0.1; A2=1.0

A1=1.0; A2=0.1

A1=1.0; A2=1.0

FIGURE 3. Objective cost functional up to 500

In addition, we conduct simulations to reveal how the cost of intervention is measured
through controls of the objective cost functional. Figure 3 shows the simulation results of
four scenarios for minimizing the objective functional J(u1, u2) for fixed B1 = B2 = 0.1. We
created a scenario for the cost of obesity and investigated intervention strategies over 500.

In the case of A1 = 1.0 and A2 = 0.1, the yellow curve rises sharply to 0.99 at about 350 and
decreases slightly after this time. This signifies that a high cost is required until about 350. In
the case A1 = 0.1 and A2 = 1.0, the red curve increases steadily. Therefore, the cost required
increases continuously. In the case A1 = 1.0 and A2 = 0.1, the black curve rises sharply to
nearly 0.55 at about 100 and then gradually decreases. For the last case, A1 = A2 = 0.1, the
blue curve initially shows a slight increases but soon settles to stay at the same value.

6. DISCUSSION AND CONCLUSIONS

The simulation exhibits no effect on the proportions p and q. Our model shows successful
control to reduce the spread of obesity. When one or both weights are ten times the default
value, control of IN increases gently up to about 280 hours and then decreases. In the case
of the baseline value A1 = A2 = 0.1, IN is rapidly controlled up to about 180, after which
control decreases. The population IN of infected people naturally decreases after about 108.
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However, IO is constantly increasing. In the cases A1 = A2 = 1.0 and A1 = 0.1, A2 = 1.0,
the population IO is continuously well controlled by maximum control u∗2. If we hope to delay
IO, we should keep control. Therefore, to reduce IO, we can expected a strong effect when
both A1 and A2 are high. However, maintaining high A1 and A2 means that the social burden
may become high because the intervention must be maintained at maximum for a long time.
Similarly, to prevent progression to obesity, [18] suggests that obesity control strategies require
intensive, long-term counseling as obesity prevention interventions.

We created a long-term scenario of the cost of obesity. The yellow curve for weights A1 =
1.0, A2 = 1.0 in Fig. 2 is well-controlled for the states IO and IN , even when IN loses control
after 280. Figure 5 illustrates that the cost is more expensive better the control.

Our model shows the necessity for contact intervention with people with normal and overeat-
ing behaviors. However, it is necessary to advise an alternative method because it is impossible
to manage social contact between people. Also, the social and cultural environment can affect
people’s risk of becoming obese, so it is necessary to create environments, for instance as so-
cial activities, where obesity can be avoided. Even when people are in social contact, limiting
unhealthy foods for eating will help them avoid obesity.

The more effectively people are made aware of the risk of obesity, the more they can be
expected to avoid it proactively. As concrete examples, Leslie J. Sim et al. propose the im-
plementation of education on a large scale or social marketing approaches as tangible methods
to encourage positive reactions to environmental transformations [18]. Mass media campaigns
are a commonly used public health strategy. Therefore, the recommended intervention is to
encourage human awareness and recognition of the danger of obesity by implementing an in-
tensive media campaign about calorie intake. However, almost half of obesity prevention cam-
paigns have been analyzed as branding advertisements [19], and the evidence is still limited as
to whether such campaigns can influence behavior change [20]. Nevertheless, to address the
social burdens of obesity, with the rapid advance of digital media and evaluation of other chan-
nels such as social media it is necessary to be very careful about various campaign approaches.

We argue that an effective intervention to reduce the transmission of obesity is to help people
become smarter about their food consumption. Although it is not possible to prohibit excessive
overeating-related entertainment or commercial food advertising through the media, it is sug-
gested that media channels should be given equal weight in presenting information about the
risks of obesity.

Governments should consider the health of their citizens by focusing on designing cities that
make it easy to use public transportation and that are convenient and enjoyable for people to
walk in. There is a need for governments to make it easier for people to shift from a sedentary
lifestyle to physical activity.

Future research needs to move beyond overeating behavior in itself and develop a com-
prehensive model of the factors implicated in the dynamic of diet, such as overeating social
patterns.
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