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ABSTRACT. This is a review paper on recent development on the spectral theory of the Neumann-
Poincaré operator. The topics to be covered are convergence rate of eigenvalues of the Neumann-
Poincaré operator and surface localization of the single layer potentials of its eigenfunctions.
Study on these topics is motivated by their relations with the cloaking by anomalous localized
resonance. We review on this topic as well.

1. INTRODUCTION AND PRELIMINARIES

This paper is a review on recent development on the spectral theory of the Neumann-
Poincaré (abbreviated to NP) operator. In this paper we restrict ourselves to the following
topics and refer to recent review papers [1, 2] for other topics:

(i) Decay rate of eigenvalues of the NP operator,
(ii) Surface localization of the surface plasmons, which are the single layer potentials of

the eigenfunctions of the NP operator,
(iii) Applications to the cloaking by anomalous localized resonance.

Let us begin by introducing the NP operator. It is an integral operator defined on the bound-
ary of a bounded domain. Let Ω be a bounded domain in Rd (d = 2, 3) whose boundary ∂Ω
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may have several but finite connected components and is assumed to be C1,α for some α > 0.
The NP operator K∂Ω acting on a function φ on ∂Ω is defined by

K∂Ω[φ](x) =

∫
∂Ω
∂nyΓ(x− y)φ(y) dσ(y) , x ∈ ∂Ω,

where Γ(x) is the fundamental solution to the Laplacian, i.e.,

Γ(x) =


1

2π
ln |x| , d = 2 ,

− 1

4π
|x|−1 , d = 3 .

Here and afterwards, ∂n denotes the outward normal derivative on ∂Ω and ∂ny does that with
respect to y variables. The L2-adjoint K∗

∂Ω of K∂Ω is also called the NP operator. This does not
cause any confusion since they have the same spectral structures. It is helpful to write down
K∗

∂Ω explicitly:

K∗
∂Ω[φ](x) =

1

ωd

∫
∂Ω

⟨x− y, nx⟩
|x− y|d

φ(y) dσ(y) , x ∈ ∂Ω,

where ω2 = 2π and ω3 = 4π.
Let S∂Ω be the single layer potential, namely,

S∂Ω[φ](x) :=

∫
∂Ω

Γ(x− y)φ(y) dσ(y) , x ∈ Rd.

Since S∂Ω maps H−1/2(∂Ω) into H1/2(∂Ω) (Hs(∂Ω) is the usual Sobolev space on ∂Ω),
⟨ , ⟩∗, defined by

⟨φ,ψ⟩∗ := −⟨φ,S∂Ω[ψ]⟩,

where the righthand side is the H−1/2 − H1/2 duality pairing, becomes a bilinear form on
H−1/2(∂Ω). In fact, ⟨ , ⟩∗ is an inner product on H−1/2

0 (∂Ω) (functions with the mean zero)
in two dimensions, and on H−1/2(∂Ω) in three dimensions. Moreover, the NP operator K∗

∂Ω is
self-adjoint on H−1/2(∂Ω) with respect to this inner product [3]. We refer to the survey paper
[1] and references therein for this fact.

If ∂Ω is C1,α for some α > 0, then K∗
∂Ω is a compact operator on H−1/2(∂Ω) (see [4] for

a proof of this fact). Since K∗
∂Ω is self-adjoint, the spectrum of K∗

∂Ω on H−1/2(∂Ω) consists
of eigenvalues of finite multiplicities (except 0 which can be of infinite multiplicity if it is an
eigenvalue) accumulating to 0 and 0 which is either an eigenvalue or a continuous spectrum.
We mention that the NP eigenvalues (the eigenvalues of the NP operator) lie in the interval
(−1

2 ,
1
2 ].

Let λ1, λ2, . . . (1/2 > |λ1| ≥ |λ2| ≥ . . .) be eigenvalues of K∗
∂Ω counting multiplicities,

and ψ1, ψ2, . . . are the corresponding (normalized) eigenfunctions. Let ψ0 be eigenfunction
corresponding to the eigenvalue 1/2. The following addition formula is proved in [5]: if ∂Ω is
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C1,α, then for x ∈ Ω and z ∈ Rd \ Ω

Γ(x− z) = −
∞∑
j=1

S∂Ω[ψj ](z)S∂Ω[ψj ](x) + S∂Ω[ψ0](z). (1.1)

If Ω is a ball, then this is the expansion of Γ(x−z) in terms of the spherical harmonics; in terms
of ellipsoidal harmonics if Ω is an ellipsoid (see [2]). The formula (1.1) shows in particular
that if z ∈ Rd \ ∂Ω, then S∂Ω[ψj ](z) → 0 as j → ∞. Thus S∂Ω[ψj ] is localized at the surface
∂Ω. We are interested in how fast λj and S∂Ω[ψj ](z) tend to 0 as j → ∞, which corresponds
to the first two topics mentioned at the beginning of Introduction. As the third topic indicates,
these questions are related to the cloaking by anomalous localized resonance (abbreviated to
CALR).

To discuss CALR, we consider the following problem:{
∇ · ϵδ∇u = f in Rd,
u(x) → 0 as |x| → ∞.

(1.2)

Here ϵδ represents the distribution of the dielectric constants in the presence of the inclusion
Ω. We assume that it is 1 after normalization on the background Rd \ Ω and −c + iδ on the
inclusion Ω for some constant c > 0. The dielectric constant −c indicates that Ω is a meta
material and δ is the lossy parameter tending to 0. We choose c so that the number

1− c+ iδ

1 + c− iδ

approaches to the accumulation point of the eigenvalues, namely, 0. So, we take c = 1. Then,
the distribution of dielectric constants is given by

ϵδ = (−1 + iδ)χΩ + χRd\Ω,

where χA denotes the indicator function of the set A. The source function f is compactly
supported in Rd \ Ω and satisfies the condition

∫
Rd fdx = 0 to guarantee existence of the

solution to (1.2). Significant examples of such source functions are polarizable dipoles, that
is, f(x) = a · ∇δz(x), where a is a constant vector, δz is the Dirac delta function at z located
outside Ω.

Let uδ be the solution to the problem (1.2) and let

Eδ := ℑ
∫
Rd

ϵδ|∇uδ|2 dx = δ

∫
Ω
|∇uδ|2 dx (1.3)

(ℑ for the imaginary part). The problem of CALR is to find domains Ω and the sources f such
that

Eδ → ∞ as δ → 0, (1.4)
and uδ is bounded outside some radius r. As explained in [6], the quantity Eδ represents
the time averaged electromagnetic power produced by the source f dissipated into heat. So,
(1.4) implies an infinite amount of energy dissipated per unit time in the limit δ → 0 which
is unphysical. If we scale the source f by a factor of 1/

√
Eδ, then uδ/

√
Eδ approaches zero

outside the radius r and the normalized source is invisible from the outside: CALR occurs.



90 S. FUKUSHIMA, Y.-G. JI, H. KANG, AND Y. MIYANISHI

We refer to the review paper [7] for physics related to CALR and for a comprehensive list of
relevant references.

We now discuss the NP spectral nature of CALR, particularly, its connection to the problems
(i) and (ii) stated at the beginning of this section. The problem (1.2) can be rephrased as

∆u = f in Rd \ Ω,
∆u = 0 in Ω,
u|− = u|+ on ∂Ω,
(−1 + iδ)∂nu|− = ∂nuδ|+ on ∂Ω,
u(x) → 0 as |x| → ∞.

(1.5)

Here and afterwards, subscripts + and − indicate the traces on ∂Ω from outside and inside of
Ω, respectively.

Let F be the Newtonian potential of f , i.e.,

F (x) =

∫
Rd

Γ(x− y)f(y)dy, x ∈ Rd,

and we seek the solution uδ to (1.2) in the form of

uδ(x) = F (x) + S∂Ω[φδ](x), x ∈ Rd (1.6)

for some φδ ∈ H
−1/2
0 (∂Ω). The third condition (continuity of the potential) in (1.5) is auto-

matically fulfilled since S∂Ω[φδ] is continuous across ∂Ω. The fourth condition (continuity of
the flux) takes the following form:

(−1 + iδ)∂nS∂Ω[φδ]|− − ∂nS∂Ω[φδ]|+ = (2− iδ)∂nF.

Thanks to the well-known jump relation (see, for example, [8])

∂nS∂Ω[φ]
∣∣
±(x) =

(
± 1

2
I +K∗

∂Ω

)
[φ](x), x ∈ ∂Ω, (1.7)

we see that φδ satisfies the integral equation

(µδI −K∗
∂Ω) [φδ] = ∂nF on ∂Ω, (1.8)

where

µδ :=
iδ

2(−2 + iδ)
. (1.9)

Let ψj be the normalized eigenfunction corresponding to the eigenvalue λj as before. Then
one can easily see from (1.8) that φδ admits the spectral decomposition

φδ =

∞∑
j=1

⟨∂nF,ψj⟩∗
µδ − λj

ψj .

Thanks to the condition
∫
Rd fdx = 0, we have

∫
Ω |∇F |2 dx < ∞. It thus follows from (1.6)

that ∫
Ω
|∇uδ|2 dx ≈

∫
Ω
|∇S∂Ω[φδ]|2 dx.
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Here and afterwards, A ≈ B means that there are positive constants c, C such that cA ≤ B ≤
CA. On the other hand, we have∫

Ω
|∇S∂Ω[φδ]|2dx =

∫
∂Ω

(
−1

2
I +K∗

∂Ω

)
[φδ]S∂Ω[φδ]dσ ≈

∞∑
j=1

|⟨∂nF,ψj⟩∗|2

|µδ − λj |2
,

where the first identity follows from (1.7). Because of (1.9), |µδ − λj |2 ≈ δ2 + λ2j . It then
follows from (1.3) that

Eδ ≈ δ
∞∑
j=1

|⟨∂nF,ψj⟩∗|2

δ2 + λ2j
.

In particular, if f = a · ∇δz for some z ∈ Rd \ Ω, then it is proved in [5] that

|⟨∂nF,ψn⟩∗| ≈ |a · ∇S∂Ω[ψn](z)|.

In fact, if f = a · ∇δz , then F (x) = a · ∇xΓ(x− z), and hence

⟨∂nF,ψj⟩∗ = −a · ∇
∫
∂Ω
∂nxΓ(x− z)S∂Ω[ψj ](x) dσ(x).

It can be seen from (1.1) and (1.7) that

∂nxΓ(x− z) = −
∞∑
j=1

S∂Ω[ψj ](z)∂nS∂Ω[ψj ](x) =
∞∑
j=1

(1
2
− λj

)
S∂Ω[ψj ](z)ψj(x).

It then follows that

⟨∂nF,ψj⟩∗ =
(1
2
− λj

)
a · ∇S∂Ω[ψj ](z).

As a consequence, we have

Eδ ≈ δ
∞∑
j=1

|a · ∇S∂Ω[ψj ](z)|2

δ2 + λ2j
. (1.10)

Here and throughout this paper, we writeA ≲ B to imply that there is a constantC independent
of the parameter (in this case it is δ). The meaning of A ≳ B is analogous, and A ≈ B means
that both A ≲ B and A ≳ B hold.

The estimate (1.10) clearly shows how CALR is related to the properties mentioned in (i)
and (ii), namely, decay rates of λj and a · ∇S∂Ω[ψj ](z) as j → ∞: To achieve the property
Eδ → ∞ as δ → 0, the faster decay of λj and the slower decay of a ·∇S∂Ω[ψj ](z) are desired.

It is the purpose of this paper to review recent results on decay estimates of NP eigenvalues
in two and three dimensions. We then discuss known results on CALR. We also review recent
results on the spectral structure of the NP operator in elasticity in relation to CALR.
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2. NP SPECTRUM AND CALR OF THE LAPLACE OPERATOR

2.1. Decay rate of NP eigenvalues. In this section, we review progresses on the problem (i)
mentioned at the beginning of Introduction, namely, the decay rate of the NP eigenvalues on
domains with smooth boundaries.

If a bounded domain in Rd has the C1,α boundary, then the corresponding NP operator is
compact and has eigenvalues accumulating to 0. If we denote the eigenvalues by λj which are
enumerated in descending order counting multiplicities, namely,

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · (→ 0), (2.1)

then the question is how fast they tend to 0. It turns out that the decay rates in two and three
dimensions are completely different, which is due to different regularities of the integral kernels
of the NP operator. If the boundary of the domain is Ck,α (k ≥ 1, 0 < α ≤ 1), the NP kernel
gains regularity indefinitely as k or α increases in two dimensions. However, it does not in three
dimensions if k ≥ 2. In fact, the decay rate of NP eigenvalues on a two-dimensional domain
with the Ck,α boundary is o(j−k+1−α+0) (see Theorem 2.3 for a precise statement) while
that in three dimensions is o(j−α/2+0) if k = 1 (see Theorem 2.2) and j−1/2 if k ≥ 2 (see
Theorem 2.1). Here o(j−α/2+0) means o(j−α/2+δ) for any δ > 0. NP eigenvalues on a two-
dimensional domain with the analytic boundary decays exponentially fast [9]. NP operators
on domains with corners have continuous spectrum as shown in [10, 11, 12, 13, 14, 15]. It
is worth mentioning that for the curvilinear polygonal domains in two dimensions, there is
only absolutely continuous spectrum [13, 16]. We are not aware of a domain with nonempty
singularly continuous spectrum.

Figures 1 and 2 schematically depict the decay rates in two- and three-dimensions.

C0,1 Ck,α Cω

continuous
spectrum o(j−k+1−α+0) O(e−εj)

FIGURE 1. Smoothness
of boundary and decay
rate in 2D

C0,1 C1,α C2 Ck,α

continuous
spectrum o(j−α/2+0) O(j−1/2)

FIGURE 2. Smoothness
of boundary and decay
rate in 3D

We begin the review on the decay rates with the Weyl-type asymptotics of the NP eigenval-
ues in three dimensions which is proved by Miyanishi.

Theorem 2.1 ([17]). Let Ω ⊂ R3 be a C2,α bounded domain for some α > 0. Then

|λj | ∼
(3W (∂Ω)− 2πχ(∂Ω)

128π

)1/2
j−1/2 as j → ∞, (2.2)

where W (∂Ω) and χ(∂Ω) are the Willmore energy and the Euler characteristic of ∂Ω, respec-
tively.
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Here, |λj | ∼ Cj−1/2 means that |λj |j1/2 → C as j → ∞. The Willmore energy on ∂Ω is
defined to be

W (∂Ω) :=

∫
∂Ω
H2(x) dσ

whereH(x) is the mean curvature of the surface ∂Ω. The Weyl-type asymptotics of the positive
and negative NP eigenvalues on the three-dimensional domains with the C∞ boundary are
obtained in [18]. As a consequence, it is proved that if the Gaussian curvature is negative at a
point on the boundary, then there are infinitely many negative NP-eigenvalues.

A natural question arises: what is the decay rate on C1,α domains in three dimensions?
Filling up the gap between C0,1 and C2,0+, the following result is obtained in [4].

Theorem 2.2 ([4]). If Ω ⊂ R3 is a bounded C1,α domain for some 0 < α < 1, then it holds
that

|λj | = o(j−α/2+δ) (j → ∞) (2.3)
for any δ > 0.

The following result for the two-dimensional case is obtained in the same paper.

Theorem 2.3 ([4]). If Ω ⊂ R2 is a bounded Ck,α domain for some integer k ≥ 1 and 0 < α <
1, then it holds that

|λj | = o(j−k+1−α+δ) (j → ∞) (2.4)
for any δ > 0.

The decay rate estimate (2.4) is an improvement over the result of [19] where it is proved
that |λj | = O(j−k−α+3/2) for a Ck,α bounded domain Ω ⊂ R2 (this estimate when α = 0 is
obtained in [20]).

As mentioned before, if ∂Ω is merely C0,1, then the NP operator admits essential spectrum
and may not have infinitely many eigenvalues. Thus in this case the expected decay rate is j0.
On the other hand, if Ω ⊂ R3 has the C2,α boundary, then the decay rate is j−1/2 and this rate
is optimal according to (2.2). The estimate (2.3) interpolates naturally between C0,1 and C2,α

cases. Thus we expect that (2.3) is optimal in some sense even if we don’t have a proof. We
also expect (2.4) for two dimensions to be optimal since it interpolates naturally between C0,1

and Cω cases where eigenvalues decays to 0 exponentially fast.
The difference of the decay rates between two and three dimensions as appearing in (2.2),

(2.3) and (2.4) (depicted in Figures 1 and 2) is due to the difference of the regularity properties
of the integral kernels of the NP operators. Let Ω ⊂ R3 be a bounded domain whose boundary
is Ck,α-smooth. If k = 1 and α > 0, then the integral kernel, denoted by K(x, y), of the NP
operator satisfies

|K(x, y)| ≲ |x− y|−2+α, x, y ∈ ∂Ω,

and gains regularity as α increases and we have faster decay as shown in (2.3). However, if
k ≥ 2, then it does not gain regularity even if k or α increases and, as a result, the decay rate is
fixed at j−1/2 as shown in (2.2). In two dimensions, K(x, y) gains regularity indefinitely as k
or α increase as shown in [4]. For example, if ∂Ω is C∞, then K(x, y) is C∞ on ∂Ω× ∂Ω; if
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∂Ω is Cω, so is K(x, y). Delgado and Ruzhansky prove a theorem in [21] which characterizes
the Schatten class of an integral operator on the L2-space on a compact manifold in terms of the
Sobolev regularity of its integral kernel. Theorems 2.2 and 2.3 are proved using this theorem.

We now review the result of [9] for two-dimensional domains with real analytic boundaries.
Let Ω be a bounded domain in R2 such that ∂Ω is real analytic. Let S1 be the unit circle and
Q : S1 → ∂Ω ⊂ C be a regular parametrization of ∂Ω. Then Q admits an extension as an
analytic mapping from an annulus Aϵ := {τ ∈ C : e−ϵ < |τ | < eϵ} for some ϵ > 0 onto a
tubular neighborhood of ∂Ω in C. Let

q(t) := Q(eit), t ∈ R× i(−ϵ, ϵ).
Then q is an analytic function from R× i(−ϵ, ϵ) onto a tubular neighborhood of ∂Ω. It satisfies
q(t+ 2π) = q(t) for any t ∈ R. Let ϵq be the supremum of ϵ with the following property:

If q(t) = q(s) for t ∈ [−π, π]× i(−ϵ, ϵ) and s ∈ [−π, π), then t = s.
The number ϵq is called the maximal Grauert radius for q. Let

ϵ∂Ω := sup
q
ϵq,

where the supremum is taken over all regular real analytic parametrization q of ∂Ω. The number
ϵ∂Ω is called the modified maximal Grauert radius of ∂Ω.

The following theorem holds.

Theorem 2.4 ([9]). Let Ω be a bounded planar domain with the analytic boundary ∂Ω and
ϵ∂Ω be the modified maximal Grauert radius of ∂Ω. Let {λj}∞j=0 be the eigenvalues of the NP
operator enumerated as in (2.1). Then for any ϵ < ϵ∂Ω, there exists a constant C with the
property:

|λ2j−1| = |λ2j | ≤ Ce−ϵj

for all j.

The proof relies on the Weyl-Courant min-max principle and a Paley-Wiener type lemma.

2.2. Asymptotics of NP eigenvalues with axially symmetric eigenfunctions. In this sub-
section, we review results in [22] on NP eigenvalues with axially symmetric eigenfunctions
on axially symmetric domains in three dimensions. A typical example of such a domain is a
torus. More concretely, let Σ ⊂ R2 be a bounded domain with the Lipschitz boundary such
that Σ ⊂ R× (0,∞). We then define Ω by

Ω := {(x, y cos η, y sin η) | (x, y) ∈ Σ, η ∈ [−π, π)}. (2.5)

For example, if Σ is a disk, then Ω is a solid torus. We say that the function F : ∂Ω → C
is axially symmetric if F (x, y cos η, y sin η) is independent of η. In [22], the decay rate and
asymptotics of the NP eigenvalues whose eigenfunctions are axially symmetric are investi-
gated.

This study is strongly motivated by the work [23] where it is observed by computational
experiments that the single layer potential of axially symmetric eigenfunctions on a torus seem
less localized near the boundary of the domain compared to other eigenfunctions. Based on the
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formula (1.10), this observation leads us to investigation of the decay rate of the corresponding
eigenvalues as the first step for the challenging exploration of occurrence (or non-occurrence)
of CALR on three-dimensional axially symmetric domains.

We define for p = (x, y) ∈ ∂Σ

vp := −np,2 (2.6)
where np,2 is the second component of the outward normal vector np at p, namely, np =
(np,1, np,2). We also introduce the distance

δ(p, p′) :=
|p− p′|
2(yy′)1/2

(p = (x, y), p′ = (x′, y′) ∈ ∂Σ).

For a given function f on ∂Σ, let E[f ] be the extension to ∂Ω defined by

E[f ](x, y cos η, y sin η) = y−1/2f(x, y).

It is proved in [22] that the following relation holds:

K∗
∂Ω[E[f ]](x, y cos η, y sin η) = y−1/2K∗

0[f ](p) (p = (x, y)), (2.7)

where K∗
0 is the integral operator of the form

K∗
0[f ](p) :=

∫
∂Σ
K∗

0 (p, p
′)f(p′) dσ(p′)

with
K∗

0 (p, p
′) = K∗

∂Σ(p, p
′)A0(δ(p, p

′))− vp
4πy

B0(δ(p, p
′)).

Here, K∗
∂Σ(p, p

′) is the integral kernel of the NP operator K∗
∂Σ on ∂Σ and

A0(δ) := δ2
∫ π/2

0

1

(δ2 + sin2 φ)3/2
dφ, B0(δ) =

∫ π/2

0

sin2 φ

(δ2 + sin2 φ)3/2
dφ.

The relation (2.7) shows that the subspace of axially symmetric functions is invariant under
K∗

∂Ω. Furthermore, it shows that investigating the spectral property of K∗
∂Ω amounts to that of

K∗
0 on H−1/2(∂Σ) equipped with the inner product

⟨f, g⟩0 := ⟨E[f ], E[g]⟩∗
for f, g ∈ H−1/2(∂Σ). With this inner product, K∗

0 is self-adjoint.
It is further proved, by investigating the asymptotic behaviour of the integrals A0, B0 as

δ → 0, that
K∗

0 = K∗
∂Σ −MS∂Σ +R∗ (2.8)

where M is the multiplication operator by vp
2y and S∂Σ is the single layer potential on ∂Σ. The

difference R∗ is a smoothing operator and the singularity of the integral kernel of K∗
0 comes

from that of either K∗
∂Σ or S∂Σ.

If ∂Σ is C1,α, then |K∗
∂Σ(p, p

′)| ≲ |p− p′|−1+α, which is more singular than the singularity
log |p−p′| of S∂Σ. If ∂Σ isCk,α (k ≥ 2), thenK∗

∂Σ(p, p
′) is bounded, and hence the singularity

of K∗
0 (p, p

′) is log |p − p′|. Because of this difference of singularities of K∗
0 (p, p

′), we obtain
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different decay estimates depending on the regularity of ∂Σ, which is natural if we compare
them with decay rates in three dimensions as described in Theorem 2.1 and 2.2.

We denote by ρj eigenvalues of K∗
∂Ω with axially symmetric eigenfunctions, namely, the

eigenvalues of the operator K∗
0. If ∂Σ is C1,α, then K∗

0 is compact and has eigenvalues of finite
multiplicities converging to 0. We enumerate all such eigenvalues {ρj}∞j=1 in the descending
order

|ρ1| ≥ |ρ2| ≥ |ρ3| ≥ · · · → 0.

Theorem 2.5 ([22]). Let Ω be the axially symmetric domain defined by (2.5).
(1) If ∂Σ is C1,α for some α > 0, then it holds that

|ρj | = o(j−α+δ) (j → ∞)

for all δ > 0.
(2) If ∂Σ is Ck,α for some k ≥ 2 and α > 0, then it holds that

|ρj | = O(j−1 log j) (j → ∞).

If ∂Ω is C∞, then we obtain asymptotics of the positive and negative eigenvalues with
axially symmetric eigenfunctions. We enumerate all positive eigenvalues ρ+j > 0 and negative
eigenvalues −ρ−j < 0 of K∗

0 in descending orders:

ρ±1 ≥ ρ±2 ≥ ρ±3 ≥ · · · .

Theorem 2.6 ([22]). Let Ω be the axially symmetric domain defined by (2.5). If ∂Σ is C∞,
then

|ρj | ∼ C0j
−1, ρ±j ∼ C±

0 j
−1

where C0 and C±
0 are defined by

C±
0 = ∓ 1

4π

∫
{p=(x,y)∈∂Σ|∓vp>0}

vp
y
dσ(p)

and
C0 = C+

0 + C−
0 .

The coefficients C±
0 have significant geometric meanings. Suppose that Σ is convex. Be-

cause of (2.6), if vp > 0, then np is downward, and hence (x, y cos η, y sin η) is a concave
point on ∂Ω. So, C−

0 is the integration over the concave part of Σ; C+
0 over the convex part.

The connection between negative NP eigenvalues and concavity of the domain has been proved
in [24, 18] that if there exists a point on the boundary where the Gaussian curvature is nega-
tive, then the NP operators has infinitely many negative eigenvalues. Since C±

0 > 0, Theorem
2.6 that there are infinitely many positive and negative NP eigenvalues with axially symmetric
eigenfunctions.

Theorem 2.6 requires ∂Σ to be C∞. It is because it’s proof uses a result of [25] which relies
on calculus of pseudo-differential operators.

If ∂Σ is Lipschitz, then we can observe an interesting fact from the formula (2.8). Since
MS∂Σ − R∗ compact, K∗

0 is a compact perturbation of K∗
∂Σ. We emphasize that K∗

0 and
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K∗
∂Σ are self-adjoint on H−1/2(∂Σ) with different inner products. However, since these inner

products induce equivalent norms, one can prove that K∗
0 and K∗

∂Σ have the same essential
spectra on H−1/2(∂Σ) using the Weyl criterion. As a consequence, we have the following
theorem.

Theorem 2.7 ([22]). If ∂Σ is Lipschitz, then the inclusion relation

σess(K∗
∂Σ, H

−1/2(∂Σ)) ⊂ σess(K∗
∂Ω, H

−1/2(∂Ω))

holds.

Theorem 2.7 gives examples of three-dimensional domains with non-trivial essential spec-
trum. For instance, we apply Theorem 2.7 together with the result of [15] to obtain the follow-
ing corollary:

Corollary 2.8 ([22]). If ∂Σ is a curvilinear polygon with the minimum angle α ∈ (0, 2π), then[
−
∣∣∣∣12 − α

2π

∣∣∣∣ , ∣∣∣∣12 − α

2π

∣∣∣∣] ⊂ σess(K∗
∂Ω, H

−1/2(∂Ω)).

2.3. CALR. It is in [26] that the phenomena of anomalous resonance is related to the invisi-
bility cloaking and CALR is proved to occur when the source function f in (1.2) is given by
f = a · ∇δz for some z ∈ Rd \ Ω and Ω is an annulus. It is proved that there is a virtual
radius r∗ such that if |z| < r∗, then (1.4) holds and CALR takes place; if |z| > r∗, then Eδ

is bounded regardless of δ. In fact, r∗ =
√
r3e/ri, where re and ri are outer and inner radii of

the annulus, respectively. This result is extended to other sources in [6] by relating CALR with
the spectral properties of the NP operator. CALR occurs on confocal ellipses as proved in [27].
Since CALR is a phenomenon occurring at the limit point of NP eigenvalues, the structure does
not have to be doubly connected. The only requirement for geometry of the domain is that 0 is
not an eigenvalue of the NP operator. In fact, it is proved in [5] that CALR occurs on ellipses,
which we review in this section.

In three dimensions no domain is known where CALR occurs. It is known that CALR does
not take place on balls [28] and strictly convex domains in three dimensions [23]. We review
this result as well.

CALR on ellipses. The elliptic coordinates (ρ, ω) for x = (x1, x2) = (x1(ρ, ω), x2(ρ, ω)) is
given by

x1(ρ, ω) = R cosω cosh ρ, x2(ρ, ω) = R sinω sinh ρ, ρ > 0, 0 ≤ ω < 2π.

When this holds, we write ρ = ρx and ω = ωx. The ellipse ∂Ω is given by

∂Ω = {x ∈ R2 : ρx = ρ0} (2.9)

for some ρ0 > 0. The number ρ0 is called the elliptic radius of Ω. If we vary ρ0, then varied
ellipses are confocal.
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It is known (see, for example, [29] for a proof) that eigenvalues of K∗
∂Ω are

λn = ± 1

2e2nρ0
, n = 1, 2, · · · ,

and corresponding eigenfunctions are

ϕcn(ω) := Ξ(ρ0, ω)
−1 cosnω, ϕsn(ω) := Ξ(ρ0, ω)

−1 sinnω, n = 1, 2, · · · ,
where

Ξ = Ξ(ρ0, ω) := R

√
sinh2 ρ0 + sin2 ω.

Using the explicit forms of eigenvalues and eigenfunctions, it is proved in [5] using (1.10) that
if f(x) = a · ∇δz(x) for some z /∈ Ω, then

Eδ ≈


δ−2+ρz/ρ0 | log δ| if ρ0 < ρz < 3ρ0,

δ| log δ|2 if ρz = 3ρ0,

δ if ρz > 3ρ0,

as δ → 0. It is also proved that the solution uδ is bounded outside a bounded set. Thus, if the
location z of the source satisfies ρ0 < ρz ≤ 2ρ0, then Eδ → ∞, and CALR takes place. If
2ρ0 < ρz , then Eδ → 0, and CALR does not take place.

Non-occurrence of CALR on strictly convex domains in 3D. Here we review the result of
[23] which proves non-occurrence of CALR on strictly convex three-dimensional domains.
Let Ω be a strictly convex domain in R3 such that ∂Ω is C∞-smooth. Then all eigenvalues,
except possibly finitely many, of K∗

∂Ω are positive (see [18]). We may modify K∗
∂Ω on a finite-

dimensional subspace so that the modified operator, denoted by K∗, is positive-definite pseudo-
differential operator of order −1. Thus, for each real number s there are constants cs and Cs

such that
cs∥φ∥Hs−1/2(∂Ω) ≤ ∥K∗

∂Ω[φ]∥Hs+1/2(∂Ω) ≤ Cs∥φ∥Hs−1/2(∂Ω) (2.10)

for all φ ∈ Hs(∂Ω). Let λ1, λ2, . . . (|λ1| ≥ |λ2| ≥ . . .) be eigenvalues of K∗
∂Ω counting

multiplicities, and ψ1, ψ2, . . . are the corresponding (normalized) eigenfunctions. We infer
from (2.10) that there is j0 such that

cs∥ψj∥Hs−1/2(∂Ω) ≤ ∥K∗
∂Ω[ψj ]∥Hs+1/2(∂Ω) ≤ Cs∥ψj∥Hs−1/2(∂Ω) (2.11)

and λj > 0 for all j ≥ j0.
Let K be a compact set in R3 \ ∂Ω. Since dist(K, ∂Ω) > 0, for any positive integer k and

for any real number s, there is a constant Mk,s such that

∥S∂Ω[ψj ]∥Ck(K) ≤Mk,s∥ψj∥H−s−1/2(∂Ω).

It then follows from (2.11) that

∥S∂Ω[ψj ]∥Ck(K) ≤ Ck,s∥(K∗
∂Ω)

s[ψj ]∥H−1/2(∂Ω) = Ck,sλ
s
j

for some constant Ck,s depending on k and s, but independent of j. In particular, we have

∥∇S∂Ω[ψj ]∥L∞(K) ≲ λsj . (2.12)
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The estimate (2.12) shows that S∂Ω[ψj ] is localized too fast for CALR to occur. In fact,
since λj > 0 for all j ≥ j0, we infer from (2.2) that there is a positive constant C∂Ω such that
λj ∼ C∂Ωj

−1/2 as j → ∞. It then follows from (2.12) that

∥∇S∂Ω[ψj ]∥L∞(K) ≲ j−s

for any s > 0. Then, (1.10) yields

Eδ ≲ δ
∞∑
j=1

j−2s

δ2 + j−1
→ 0 (δ → 0),

which shows that CALR does not take place no matter where z is located.

Discussions. The two-dimensional domains, annuli and ellipses, where CALR is known to take
place are those whose NP eigenvalues and corresponding eigenfunctions are known. It would
be interesting to investigate CALR on two-dimensional domains with real analytic boundaries.
One can attempt to prove that if the location z of the source function f(x) = a · ∇δz(x) is
sufficiently close to Ω, then CALR takes place; if z is far away from Ω, then CALR does not
take place. In this case, it is known that eigenvalues decay exponentially fast [9]. But, it is not
known how the single layer potentials of eigenfunctions are localized at ∂Ω.

As mentioned before, no three-dimensional domains where CALR take place. It would be
interesting to find one, if there is any.

3. NP SPECTRUM AND CALR FOR THE LAMÉ SYSTEM

The NP operator for the Lamé system of the linear elasticity is defined similarly to that for
the Laplace operator. However, there is a significant difference between two NP operators:
Unlike the one for the Laplace operator, the NP operator for the Lamé system (abbreviated to
the eNP operator) is not compact even if the boundary of the domain is smooth. Recently, it
is proved that if the domain has a smooth boundary, then the corresponding eNP operator is
polynomially compact and spectrum consists of eigenvalues accumulating to some numbers
determined by Lamé constants. CALR occurring at different accumulation points are investi-
gated when the domain is an ellipse. It is further proved in a recent preprint that vector fields
on the boundary of the domain can be canonically decomposed so that each linear factor of the
polynomial of the eNP operator is compact on each subspace, and those subspaces characterize
eigenspaces. We review these results in this section.

3.1. Spectral structure of the eNP operator. Let Ω ⊂ Rd, d = 2, 3, be a bounded Lipschitz
domain. Let (λ, µ) be a Lamé constants for Ω satisfying the strong convexity condition:

µ > 0, dλ+ 2µ > 0. (3.1)

The corresponding Lamé operator Lλ,µ is defined by

Lλ,µu := µ∆u+ (λ+ µ)∇(∇ · u),
and the corresponding conormal derivative ∂ν on ∂Ω is defined by

∂νu := λ(∇ · u)n+ 2µ(∇̂u)n,



100 S. FUKUSHIMA, Y.-G. JI, H. KANG, AND Y. MIYANISHI

where ∇̂ denotes the symmetric gradient, namely, ∇̂u := 1
2(∇u+∇uT ) (T for the transpose).

Let Γ = (Γij)
d
i,j=1 be the Kelvin matrix of fundamental solutions to the Lamé operator Lλ,µ,

namely,

Γij(x) :=


α1

2π
δij ln |x| −

α2

2π

xixj
|x|2

, if d = 2,

−α1

4π

δij
|x|

− α2

4π

xixj
|x|3

, if d = 3,
(3.2)

where

α1 :=
1

2

(
1

µ
+

1

λ+ 2µ

)
and α2 :=

1

2

(
1

µ
− 1

λ+ 2µ

)
,

and δij is the Kronecker’s delta (see [30]).
The eNP operator, which we denote by Ke (the subscript e is added to distinguish it from the

NP operator for the Laplace operator and ∂Ω is deleted from the subscript for ease of notation),
is defined by

Ke[f ](x) := p.v.

∫
∂Ω

(∂νyΓ(x− y))T f(y) dσ(y), x ∈ ∂Ω.

Like the NP operator K∂Ω for the Laplacian, the eNP operator Ke can be realized as a self-
adjoint operator on H1/2(∂Ω)d by introducing a new inner product (see [31]).1 Unlike K∂Ω

which is compact onH1/2(∂Ω) if ∂Ω is C1,α for some α > 0, the eNP operator is not compact
on H1/2(∂Ω)d even if ∂Ω is smooth (see [32]). We will see that the eNP operator is polynomi-
ally compact on H1/2(∂Ω)d and each linear factor of the polynomial is compact on a subspace
of H1/2(∂Ω)d whose sum is H1/2(∂Ω)d. To prove this, a decomposition theorem for surface
vector fields is proved in [33]. We review the decomposition theorem in a separate subsection
since it is of independent interest.

Decomposition theorem for surface vector fields. Set H := H1/2(∂Ω). For each f ∈ Hd,
let vf− ∈ H1(Ω)d be the unique solution to{

∆u = 0 in Ω,

u = f on ∂Ω.

Similarly, we define vf+ for the unique solution to
∆u = 0 in Rd \ Ω,
u = f on ∂Ω,
u = O(|x|−1) as |x| → ∞,

(3.3)

such that ∇vf+ ∈ L2(Rd \ Ω)d if d = 2 and vf+ ∈ H1(Rd \ Ω)d if d = 3. Note that we need
to impose the condition

∫
∂Ω f = 0 to ensure the existence of the solution to (3.3) if d = 2. We

1Here we work with Ke instead of K∗
e while for the Laplace operator we work with K∗

∂Ω. We do so because the
decomposition theorem is more transparently described if we deal with H1/2(∂Ω)d than with H−1/2(∂Ω)d.
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define subspaces of Hd as follows:

Hdiv := {f ∈ Hd | ∇ · vf− = 0 in Ω, ∇ · vf+ = 0 in Rd \ Ω},

H−
div,rot := {f ∈ Hd | ∇ · vf− = 0, ∇× vf− = 0 in Ω},

H+
div,rot := {f ∈ Hd | ∇ · vf+ = 0, ∇× vf+ = 0 in Rd \ Ω}.

If d = 2, ∇× is replaced by rot2.
In two dimensions, the decomposition theorem is an immediate consequence of the jump

relation of the Cauchy integral. For a complex function f , the Cauchy integral C is defined by

C[f ](z) := 1

2πi

∫
∂Ω

f(w)

w − z
dw, z ∈ C \ ∂Ω.

Let Cb be the Cauchy transform on ∂Ω, namely,

Cb[f ](z) :=
1

2πi
p.v.

∫
∂Ω

f(w)

w − z
dw, z ∈ ∂Ω.

The following jump relation is well-known:

C[f ]|± =

(
Cb ∓

1

2
I

)
[f ].

See [34, (17.2)] for the case when ∂Ω smooth, and [35, 36, 37] for the Lipschitz case. Thus we
have a decomposition

f = C[f ]|− − C[f ]|+,
where C[f ]|− extends to Ω as an anti-holomorphic function and C[f ]|+ to C\Ω. By identifying
the vector field f = (f1, f2) with the complex function f1 − if2, this decomposition yields the
following theorem.

Theorem 3.1. Let Ω be a bounded domain in R2 with the Lipschitz boundary.

H2 = H−
div,rot ⊕H+

div,rot. (3.4)

The sum in (3.4) is actually the orthogonal sum with respect to the inner product on H2

defined by the (inverse of) single layer potential, namely,

∥f∥2∗ = −⟨f,S−1
e [f ]⟩

where Se is the single layer potential defined by the fundamental solution (3.2).
In three dimensions, we have the following theorem.

Theorem 3.2 ([33]). Let Ω be a bounded domain in R3 with the Lipschitz boundary. The
subspaces H−

div,rot, H
+
div,rot and Hdiv are infinite-dimensional, and it holds that

H3 = H−
div,rot ⊕H+

div,rot ⊕ (H−
div,rot +H+

div,rot)
⊥,

2The results reviewed in this section hold to be true even when d ≥ 3. We describe the results for d = 2, 3 for
convenience.
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where the decomposition is orthogonal, and

(H−
div,rot +H+

div,rot)
⊥ ⊂ Hdiv.

In particular, we have
H3 = H−

div,rot ⊕H+
div,rot +Hdiv. (3.5)

We do not know whether the decomposition (3.5) is orthogonal for a general domain Ω, or
equivalently,

H±
div,rot ∩Hdiv = {0}.

Regarding this question the following theorem is proved.

Theorem 3.3 ([33]). Let Ω be a bounded domain in R3. If ∂Ω is C1,α for some α > 1/2, then
the following inequality holds:

dimHdiv/(H−
div,rot +H+

div,rot)
⊥ = dimHdiv ∩ (H−

div,rot +H+
div,rot) ≤ b1(∂Ω),

where b1(∂Ω) denotes the first Betti number of ∂Ω.

In particular, if ∂Ω is simply connected, then b1(∂Ω) = 0 and the following corollary is
obtained.

Corollary 3.4 ([33]). Let Ω be a bounded domain in R3. If ∂Ω is C1,α for some α > 1/2 and
simply connected, then the orthogonal decomposition

H3 = H−
div,rot ⊕H+

div,rot ⊕Hdiv

holds.

It is helpful to review the proof of Theorem 3.2 briefly. The Lamé operator can be written as

Lλ,µu = −µ∇× (∇× u) +
µ

2k0
∇(∇ · u),

where
k0 :=

µ

2(λ+ 2µ)
. (3.6)

The corresponding conormal derivative is given by

∂Dν u(x) := −µnx × (∇× u)(x) +
µ

2k0
(∇ · u)(x)nx

for all x ∈ ∂Ω. We introduce the div-free eNP operator KD
e defined by

KD
e [f ](x) := p.v.

∫
∂Ω

(∂DνyΓ(x− y))T f(y) dσ(y).

We call KD
e div-free eNP operator because the corresponding double layer potential produces

divergence-free solutions of the Lamé system. It is worth mentioning that the divergence-free
solutions of the Lamé system are solutions for any pair of Lamé parameters. It is then proved
in [33] that

H±
div,rot = Ker

(
KD

e ± 1

2
I

)
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and

Ran
(
KD

e +
1

2
I

)(
KD

e − 1

2
I

)
⊂ Hdiv,

from which Theorem 3.2 follows.

Spectral structure of the eNP operator. As mentioned before, Ke is not compact even if
∂Ω is smooth. However, it is proved that eNP operator is polynomially compact. In fact, it
is proved in [31] that if Ω ⊂ R2 and ∂Ω is C1,α for some α > 0, then K2

e − k20I (k0 is the
number defined in (3.6)) is compact and the spectrum of Ke on H2 consists of eigenvalues
converging to k0 and −k0; in [38] that if Ω ⊂ R3 and ∂Ω is C∞, then Ke(K2

e − k20I) is
compact and the spectrum of Ke on H3 consists of eigenvalues converging to k0, −k0 and 0.
Refinements of these results are obtained in [33]. One refinement is that the linear factors of
K2

e − k20I or Ke(K2
e − k20I) are compact on subspaces appearing in the decompositions (3.4)

or (3.5), respectively. The other refinement is characterization of eigenspaces in terms of those
subspaces.

The two-dimensional result is as follows, which yields the result of [31] as corollary.

Theorem 3.5 ([33]). If Ω is a bounded domain in R2 whose boundary is C1,α for some α > 0,
then Ke + k0I and Ke − k0I are compact on H−

div,rot and H+
div,rot, respectively.

We then have characterizations of eigenspaces. Here and afterwards, ∥ ∥∗ is the norm in-
duced by the inner product ⟨ , ⟩∗.

Theorem 3.6 ([33]). Let Ω be a bounded domain in R2 whose boundary is C1,α for some
α > 0. Let {fj}∞n=1 be an orthonormal system in H2 consisting of eigenfunctions of Ke and
let λj ∈ R be the corresponding eigenvalues, i.e., Ke[fj ] = λjfj . Let P± be the orthogonal
projections onto H±

div,rot, respectively. The followings hold.

(i) If λj → k0, then ∥(P+ − I)[fj ]∥∗ → 0.
(ii) If λj → −k0, then ∥(P− − I)[fj ]∥∗ → 0.

Moreover, estimates on the rotation and the divergence of the solutions to the interior and ex-
terior boundary value problems with the eigenfunctions fj as the boundary values are obtained
[33].

In three dimensions, the following theorem is obtained.

Theorem 3.7 ([33]). Let Ω be a bounded domain in R3 whose boundary is C1,α for some
α > 0.

(i) If α > 0, then the operators Ke + k0I and Ke − k0I are compact on H−
div,rot and

H+
div,rot, respectively.

(ii) If α > 1/2, then the operator Ke is compact on Hdiv.

In (ii) above, the condition α > 1/2 is assumed to guarantee the multiplication operator
by the normal vector n to be bounded from H into H3. As an immediate consequence of this
theorem, the result of [38] is extended to domains with C1,α boundaries:
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Corollary 3.8 ([33]). If Ω is a bounded domain in R3 whose boundary is C1,α for some α >
1/2, then the operator Ke(K2

e − k20I) is compact on H3.

We use infinite dimensionality of the subspaces H−
div,rot, H

+
div,rot, and Hdiv to prove that

the operators K2
e − k20I , Ke(Ke − k0I), and Ke(Ke + k0I) are not compact on H3. As a

consequence we obtain the following theorem, which was proved in [38] when ∂Ω is C∞.

Theorem 3.9 ([33]). If Ω is a bounded domain in R3 whose boundary is C1,α for some α >
1/2, then the eigenvalues of the eNP operator Ke on H3 consist of three infinite real sequences
converging to 0, k0, and −k0.

Then, the following theorem is obtained.

Theorem 3.10 ([33]). Let Ω be a bounded domain in R3 whose boundary is C1,α for some
α > 1/2. Let {fj}∞n=1 be an orthonormal system in H3 consisting of eigenfunctions of Ke. Let
λj ∈ R be the corresponding eigenvalues, i.e., Ke[fj ] = λjfj . Then fj can be decomposed
into the sum fj = f+j + f−j + foj , where

f±j ∈ H±
div,rot, foj ∈ (H+

div,rot +H−
div,rot)

⊥ ⊂ Hdiv,

and the following statements hold as n→ ∞:
(i) If λj → k0, then ∥fj − f+j ∥H3 → 0.

(ii) If λj → −k0, then ∥fj − f−j ∥H3 → 0.
(iii) If λj → 0, then ∥fj − foj ∥H3 → 0.

Like the two-dimensional case, estimates on the curl and the divergence of the solutions to
the interior and exterior problems are also obtained.

3.2. Convergence rates and asymptotics of eigenvalues. In this subsection, we review recent
results on estimates of the convergence and asymptotic behaviour of eigenvalues.

Let a = +1,−1 in two dimensions and a = +1, 0,−1 in three dimensions, and let λaj be
eigenvalues of the eNP operator converging to ak0 as j → 0. They are enumerated counting
multiplicities in such a way that

|λa1 − ak0| ≥ |λa2 − ak0| ≥ |λa3 − ak0| ≥ · · · .
The following results for the two-dimensional case are proved in [39].

Theorem 3.11 ([39]). Let Ω be a bounded domain in R2 whose boundary is Ck,α with k+α >
2 and 0 ≤ α < 1, It holds for a = +1,−1 that

λaj = ak0 + o(jδ) as j → ∞ (3.7)

for any δ > −(k + α) + 3/2.

To present the result for the domains with real analytic boundaries, we need the notion of
the parametrization by a Riemann mapping. Let U be the unit disk and let Φ : U → Ω be a
Riemann mapping. Then, q(s) = Φ(eis) is called the parametrization of ∂Ω by Φ.
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Theorem 3.12 ([39]). Let Ω be a bounded domain in R2 whose boundary is real analytic. Let q
be a parametrization of ∂Ω by a Riemann mapping and let ϵq be its modified maximal Grauert
radius. It holds that

λaj = ak0 + o(e−ϵj) as j → ∞ (3.8)

for any ϵ < ϵq/8 .

It is worth mentioning that (3.8) is not optimal as was shown in also shown in [39] by an
example.

Quite recently, the leading order asymptotics of λaj are derived in [40] when Ω ⊂ R3 and
∂Ω is C∞. Precise asymptotics of positive and negative parts of λaj − ak0 are obtained. Here
we write the asymptotics of |λaj − ak0| just for simplicity.

Theorem 3.13 ([40]). Let Ω be a bounded smooth domain in R3. It holds that

|λaj − ak0| ∼ (AaW (∂Ω) +Baχ(∂Ω))
1
2 j−

1
2 , as j → ∞,

where Aa and Ba are constants determined only by the Lamé constants λ, µ, and W (∂Ω) and
χ(∂Ω) are Willmore energy and the Euler characteristic of the surface ∂Ω, respectively.

3.3. CALR on ellipses. We now review the result of [31] on CALR for the Lamé system on
ellipses. Ellipses are the only domains where CALR takes place. No domain is known where
CALR does not take place.

Let Ω be a bounded domain in R2 with C1,α boundary. Let (λ, µ) be the Lamé constants of
R2 \ Ω satisfying the strong convexity condition (3.1). Let (λ̃, µ̃) be Lamé constants of Ω. We
assume that (λ̃, µ̃) is of the form

(λ̃, µ̃) := (c+ iδ)(λ, µ),

where c < 0 and δ > 0. Since eigenvalues of the eNP operator accumulate at either k0 or −k0,
we choose c so that k(c) = k0 or −k0, where

k(c) :=
c+ 1

2(c− 1)
.

Let C and C̃ be the isotropic elasticity tensor corresponds to (λ, µ) and (λ̃, µ̃), respectively,
and let

CΩ = C̃χΩ + CχR2\Ω,

where χ denotes the indicator function as before. We consider the following transmission
problem: {

∇ · CΩ∇̂u = f in R2,

u(x) = O(|x|−1) as |x| → ∞,

where the source function f is taken to be a polarizable dipole, namely,

f = A∇δz.
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Here, A is a 2× 2 constant matrix not of the form[
a b
−b a

]
.

In this case, the relevant energy is given by

Eδ = δ

∞∑
j=1

|A∇Se[ψj ](z)|2

δ2 + |kδ(c)− λj |2
,

where λj is eigenvalues of the eNP operator and ψj is the corresponding normalized eigen-
functions.

The following theorem is proved in [31].

Theorem 3.14 ([31]). Let Ω be the ellipse defined by (2.9).

(i) If k(c) = k0, then

Eδ ≈

{
|log δ| δ−2+ρz/ρ0 if ρ0 < ρz ≤ 3ρ0,

δ if ρz > 3ρ0,

as δ → 0.
(ii) If k(c) = −k0, then

Eδ ≈

{
| log δ|3δ−3/2+ρz/2ρ0 if ρ0 < ρz ≤ 5ρ0,

δ if ρz > 5ρ0,

as δ → 0.

As a consequence of this theorem, it is proved that if k(c) = k0, then CALR occurs if
ρ0 < ρz ≤ 2ρ0. It is worth mentioning that this cloaking region coincides with that for Laplace
equation explained in subsection 2.3. If k(c) = −k0, then CALR occurs if ρ0 < ρz ≤ 3ρ0. It
is interesting to observe that the cloaking region is different from that for the case k(c) = k0.

3.4. Discussions. The decay estimate (2.2) for the Laplace operator in two dimensions strongly
suggests that there is a room for the estimate (3.7) to be improved. In three dimensions the de-
cay rate of eigenvalues of the eNP operator for domains less regular than C∞ is not known.
These are interesting problems to investigate. No three-dimensional domain is known where
the CALR occurs or does not occur. This is also an intriguing problem.
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