DOI QR코드

DOI QR Code

Carbon fiber-based long-gauge sensors monitoring the flexural performance of FRP-reinforced concrete beams

  • Mohamed A. Saifeldeen (Department of Civil Engineering, Faculty of Engineering, Aswan University) ;
  • Nariman Fouad (Department of Civil Engineering, Faculty of Engineering, Aswan University)
  • 투고 : 2023.11.18
  • 심사 : 2023.12.20
  • 발행 : 2023.12.25

초록

Long-gauge carbon fiber line (CFL) sensors have received considerable attention in the past decade. However, there is still a need for an in-depth investigation of their measuring accuracy. This study investigates the accuracy of carbon fiber line sensors to monitor and differentiate the flexural behavior of two beams, one reinforced with steel bars alone and the other reinforced with steel and basalt fiber-reinforced polymer bars. A distributed set of long-gauge carbon fiber line, Fiber Bragg Grating (FBG), and traditional strain gauge sensors was mounted on the tensile concrete surface of the studied beams to compare the results and assess the accuracies of the proposed sensors. The test beams were loaded monotonically under four-point bending loading until failure. Results indicated the importance of using long-gauge sensors in providing useful, accurate, and reliable information regarding global structural behavior, while point sensors are affected by local damage and strain concentrations. Furthermore, long-gauge carbon fiber line sensors demonstrated good agreement with the corresponding Fiber Bragg Grating sensors with acceptable accuracy, thereby exhibiting potential for application in monitoring the health of large-scale structures.

키워드

참고문헌

  1. Abdel-Jaber, H. and Glisic, B. (2014), "A method for the on-site determination of prestressing forces using long-gauge fiber optic strain sensors", Smart Mater. Struct., 23(7), 075004. https://doi.org/10.1088/0964-1726/23/7/075004.
  2. Abdullah, A., Rice, J.A. and Hamilton, H. (2015), "A strain-based wire breakage identification algorithm for unbonded PT tendons", Smart Struct. Syst., 16(3), 415-433. https://doi.org/10.12989/sss.2015.16.3.415.
  3. Abed, F. and Alhafiz, A.R. (2019), "Effect of basalt fibers on the flexural behavior of concrete beams reinforced with BFRP bars", Compos. Struct., 215, 23-34. https://doi.org/10.1016/j.compstruct.2019.02.050.
  4. Ansari, F. (2005), "Fiber optic health monitoring of civil structures using long gage and acoustic sensors", Smart Mater. Struct., 14(3), S1. https://doi.org/10.1088/0964-1726/14/3/001.
  5. Chen, S.Z., Wu, G. and Feng, D.-C. (2019), "Damage detection of highway bridges based on long-gauge strain response under stochastic traffic flow", Mech. Syst. Signal. Pr., 127 551-572. https://doi.org/10.1016/j.ymssp.2019.03.022.
  6. Chen, S.Z., Wu, G., Xing, T. and Feng, D.C. (2017), "Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors", Smart Mater. Struct., 27(1), 015015. https://doi.org/10.1088/1361-665x/aa9bbe.
  7. Chung, D.D.L. (2012), "Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing", Carbon. 50(9), 3342-3353. https://doi.org/10.1016/j.carbon.2012.01.031.
  8. Dang, N.L., Huynh, T.C., Pham, Q.Q., Lee, S.Y. and Kim, J.T. (2020), "Damage-sensitive impedance sensor placement on multi-strand anchorage based on local stress variation analysis", Struct. Control Health Monit.. 27(7), e2547. https://doi.org/10.12989/sss.2015.16.3.415.
  9. Ercolino, M., Farhidzadeh, A., Salamone, S., Magliulo, G.J.S.M. and Maintenance (2015), "Detection of onset of failure in prestressed strands by cluster analysis of acoustic emissions", Struct. Monit. Maint., 2(4), 339-355. https://doi.org/10.12989/smm.2015.2.4.339.
  10. Farrar, C.R. and Worden, K. (2010), An introduction to structural health monitoring, New Trends in Vibration Based Structural Health Monitoring, Springer.
  11. Fouad, N. and Saifeldeen, M.A. (2021), "Smart self-sensing fiber-reinforced polymer sheet with woven carbon fiber line sensor for structural health monitoring", Adv. Struct. Eng., 24(1), 17-24. https://doi.org/10.1177/1369433220944507.
  12. Fouad, N., Saifeldeen, M.A., Huang, H. and Wu, Z. (2016), "Early corrosion monitoring of reinforcing steel bars by using long-gauge carbon fiber sensors", J. Civ. Struct. Health Monit., 6(4), 691-701. https://doi.org/10.1007/s13349-016-0190-7.
  13. Glisic, B., Hubbell, D.L., Sigurdardottir, D.H. and Yao, Y. (2013), "Damage detection and characterization using long-gauge and distributed fiber optic sensors", Opt. Eng., 52(8), 087101. https://doi.org/10.1117/1.oe.52.8.087101.
  14. Glisic, B. and Inaudi, D. (2007), Fibre optic methods for structural health monitoring, John Wiley & Sons
  15. Hollaway, L. (2010), "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties", Constr. Build. Mater., 24(12), 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062.
  16. Hong, W., Lv, K., Li, B., Jiang, Y., Hu, X., Qu, Q.J.S.M. and Structures (2017), "Deflection determination of concrete structures considering nonlinearity based on long-gauge strain sensors", Smart Mater. Struct., 26(10), 105023. https://doi.org/10.1088/1361-665x/aa87d7.
  17. Hong, W., Lv, Z., Zhang, X. and Hu, X. (2020), "Displacement shape measurement of continuous beam bridges based on long-gauge fiber optic sensing", Opt. Fiber Technol., 56, 102178. https://doi.org/10.1016/j.yofte.2020.102178.
  18. Hu, N., Karube, Y., Arai, M., Watanabe, T., Yan, C., Li, Y., Liu, Y. and Fukunaga, H. (2010), "Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor", Carbon., 48(3), 680-687. https://doi.org/10.1016/j.carbon.2009.10.012.
  19. Huang, H. and Wu, Z. (2012), "Static and dynamic measurement of low-level strains with carbon fibers", Sens. Actuat. A. 183, 140-147. https://doi.org/10.1016/j.sna.2012.06.006.
  20. Huang, H., Yang, C. and Wu, Z. (2012), "Electrical sensing properties of carbon fiber reinforced plastic strips for detecting low-level strains", Smart Mater.. Struct., 21(3), 035013. https://doi.org/10.1088/0964-1726/21/3/035013.
  21. Kassem, C., Farghaly, A.S. and Benmokrane, B. (2011), "Evaluation of flexural behavior and serviceability performance of concrete beams reinforced with FRP bars", J. Compos. Constr., 15(5), 682-695. https://doi.org/10.1061/(asce)cc.1943-5614.0000216.
  22. Ko, J. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021.
  23. Li, C., Gao, D., Wang, Y. and Tang, J. (2017), "Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete", Constr. Build. Mater., 141, 44-51. https://doi.org/10.1016/j.conbuildmat.2017.02.125.
  24. Li, S. and Wu, Z. (2007), "Development of distributed long-gage fiber optic sensing system for structural health monitoring", Struct. Health Monit., 6(2), 133-143. https://doi.org/10.1177/1475921706072078.
  25. Lu, Z., Su, L., Xian, G., Lu, B. and Xie, J. (2020), "Durability study of concrete-covered basalt fiber-reinforced polymer (BFRP) bars in marine environment", Compos. Struct., 234, 111650. https://doi.org/10.1016/j.compstruct.2019.111650.
  26. Naser, M., Hawileh, R. and Abdalla, J. (2019), "Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review", Eng. Struct., 198, 109542. https://doi.org/10.1016/j.engstruct.2019.109542.
  27. Pham, T.M. and Hao, H. (2017), "Behavior of fiber-reinforced polymer-strengthened reinforced concrete beams under static and impact loads", Int. J. Prot. Struct., 8(1), 3-24. https://doi.org/10.1177/2041419616658730.
  28. Saifeldeen, M.A., Fouad, N., Huang, H. and Wu, Z. (2017), "Advancement of long-gauge carbon fiber line sensors for strain measurements in structures", J. Intel. Mat. Syst. Str., 28(7), 878-887. https://doi.org/10.1177/1045389x16665974.
  29. Saifeldeen, M.A., Fouad, N., Huang, H. and Wu, Z.S. (2016), "Stabilization of electrical sensing properties of carbon fiber sensors using pre-tensioning approach", Smart Mater. Struct., 26(1), 015012. https://doi.org/10.1088/1361-665x/26/1/015012.
  30. Siddika, A., Al Mamun, M.A., Alyousef, R. and Amran, Y.M. (2019), "Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review", J. Build. Eng., 25, 100798. https://doi.org/10.1016/j.jobe.2019.100798.
  31. Tang, Y. and Wu, Z. (2016), "Distributed long-gauge optical fiber sensors based self-sensing FRP bar for concrete structure", Sensors, 16(3), 286. https://doi.org/10.3390/s16030286.
  32. Wang, J. and Yang, Q.-S. (2017), "Sensor selection approach for damage identification based on response sensitivity", Struct. Monit. Maint., 4(1), 53-68. https://doi.org/10.12989/smm.2017.4.1.053.
  33. Worden, K. and Dulieu-Barton, J.M. (2004), "An overview of intelligent fault detection in systems and structures", Struct. Health Monit., 3(1), 85-98. https://doi.org/10.1177/1475921704041866.
  34. Wu, B., Wu, G., Yang, C. and He, Y. (2018), "Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads", Mech. Syst. Signal. Pr., 104, 415-435. https://doi.org/10.1016/j.ymssp.2017.10.040.
  35. Yang, C.Q., Wu, Z.S. and Huang, H. (2007), "Electrical properties of different types of carbon fiber reinforced plastics (CFRPs) and hybrid CFRPs", Carbon, 45(15), 3027-3035. https://doi.org/10.1016/j.carbon.2007.09.001.
  36. Zhang, J., Guo, S., Wu, Z. and Zhang, Q. (2015), "Structural identification and damage detection through long-gauge strain measurements", Eng. Struct., 99, 173-183. https://doi.org/10.1016/j.engstruct.2015.04.024.
  37. Zou, X., Lin, H., Feng, P., Bao, Y. and Wang, J. (2020), "A review on FRP-concrete hybrid sections for bridge applications", Compos. Struct., 113336. https://doi.org/10.1016/j.compstruct.2020.113336.
  38. Zureick, A.-H., Bennett, R.M. and Ellingwood, B.R. (2006), "Statistical characterization of fiber-reinforced polymer composite material properties for structural design", J. Struct. Eng., 132(8), 1320-1327. https://doi.org/10.1061/(asce)0733-9445(2006)132:8(1320).