DOI QR코드

DOI QR Code

Effect of Agitation and Additive on the Vaterite Contents of Precipitated Calcium Carbonate from Oyster Shell Waste

폐 굴껍질 이용 침강성 탄산칼슘 제조에서 교반속도와 첨가제가 Vaterite 함유량에 미치는 영향

  • Young-Cheol Bak (Department of Chemical Engineering, Gyeongsang National University)
  • 박영철 (경상국립대학교 화학공학과)
  • Received : 2023.05.04
  • Accepted : 2023.05.23
  • Published : 2023.06.30

Abstract

An experiment was conducted to produce vaterite-type precipitated calcium carbonate from waste oyster shells in order to use them as recyclable resources. Calcined oyster shells containing calcium oxide as their main component were prepared at a temperature of 800℃ for 24 h. The oyster shells were dissolved in nitric acid or hydrochloric acid solution to make 0.1 M calcium nitrate or calcium chloride aqueous solution, and a carbonation reaction was performed using a 0.1 M sodium carbonate aqueous solution under various experimental conditions, which included varying the amount of aspatic acid additive, the amount of NH4OH added, the reaction time, the reaction temperature, the stirring speed, and the type of dissolved acid. The XRD, SEM, and size distributions were analyzed and the vaterite content was calculated. Spherical precipitated calcium carbonate with a vaterite content of 95.9% was synthesized by adding 0.1 mol aspatic acid/1 mol CaO and 2 cm3 of NH4OH, and reacting for 1 h at 25℃ while stirring at 600 rpm. The average particle diameter was found to be 12.11 ㎛. Calcium carbonate contatining high vaterite is used as high value added calcium carbonate for medical, food, inke additiver, etc.

폐굴껍질을 원료로 vaterite 형 침강성 탄산칼슘 제조 실험을 하였다. 굴껍질을 800℃의 온도에서 산화칼슘이 주성분인 소성 굴껍질을 제조하였다. 이 굴껍질을 질산이나 염산 용액에 녹여 0.1 M 질산칼슘이나 염화칼슘 수용액을 만들고, 여러 실험 조건에서 0.1 M 탄산나트륨 수용액과 탄산화 반응을 시켰다. 실험 조건은 aspatic acid 첨가량, 반응온도, 교반속도, NH4OH 첨가량, 반응시간, 용해 산 종류 등이다. XRD, SEM, Size 분석을 하고 vaterite 함유량을 계산하였다. 25℃, 600 rpm, aspatic acid 0.1몰/ 1몰 CaO과 2 cm3의 NH4OH를 첨가한 최적 조건에서 1시간 반응에서 vaterite 함유량 95.9%의 구형의 침강성 탄산칼슘을 합성하였다. 평균 입경은 12.11 ㎛이었다. 고 vaterite 함유 탄산칼슘은 의료용, 식용, 잉크첨가제 등 고부가가치 탄산칼슘으로 활용된다.

Keywords

References

  1. Baek, E. Y. and Lee, W. G., "A Study on the Rational Recycling of Oyster-Shell," J. Fish. Bus. Adm., 51(2), 71-87 (2020). https://doi.org/10.12939/FBA.2020.51.2.071
  2. Song, S. M., Seong, B. I., Koo, J. H., and Kim, I. H., "Effect of Aspartic Acid and Lysine on Polymorphism of Calcium Carbonate Crystal formed by Gas-liquid Reaction," Korean Chem. Eng. Res., 49(1), 109-113 (2011). https://doi.org/10.9713/kcer.2011.49.1.109
  3. Bak, Y. C., "Production of Vaterite Type Calcium Carbonate by using Oyster Shell Waste," Korean Chem. Eng. Res., 59(1), 118-126 (2021).
  4. Ramakrishna, C., Thenepalli, T., and Ahn, J. W., "Synthesis of Aragonite-Precipitated Calcium Carbonate from Oyster Shell Waste via a Carbonation Process and its Application," Korean J. Chem. Eng., 34(1), 225-230 (2017). https://doi.org/10.1007/s11814-016-0264-6
  5. Kang, J. H., Kim, J. H., and Lee, H. C., "A Study on the Development of Manufacturing Process of High Grade Precipitated Calcium Carbonate from Oyster Shell," J. Korean Solid Waste Eng. Soc., 13(2), 320-327 (1996).
  6. Park, S. S., "A Study on the Manufacture, Control of form and Crystal Size of Precipitated Calcium Carbonate from Oyster Shell," J. Korean Solid Waste Eng. Soc., 14(8), 871-882 (1997).
  7. Kang, Y. C. and Park, S. B., "Preparation of Cubic-type Calcium Carbonate particles from High Concentration Calcium Hydroxide Suspension by Controlling Hydration Temperature of Calcium Oxide," Korean Chem. Eng. Res., 35(6), 846-849 (1997).
  8. Lee, S. G., Jung, W. M., Kim, W. S., and Choi, C. K., "Effect of Agitation on Gas-Liquid Reaction Crystallization of Calcium Carbonate in an MSMPR Reactor," Korean Chem. Eng. Res., 36(1), 49-55 (1998).
  9. Lyu, S. G., Ryu, S. O., Park, Y. H., and Sur, G. S., "The preparation of Spherical Vaterite in the presence of NH4Cl by Carbonation Process," Korean Chem. Eng. Res., 36(2), 262-266 (1998).
  10. Kanakis, J. and Dalas, E., "The Crystallization of Vaterite on Fibrin," J. Crystal growth, 219, 277-282 (2000). https://doi.org/10.1016/S0022-0248(00)00623-0
  11. Kai, A., Fujikawa, K., and Miki, T., "Vaterite Stabilization in CaCO3 Crystal Growth by Amino Acid," Jpn. J. Appl. Phys., 41, 439-444 (2002). https://doi.org/10.1143/JJAP.41.439
  12. Manoli, F., Kanakis, J., Malkaj, P., and Dalas, E., "The effect of Aminoacids on the Crystal Growth of Calcium Carbonate," J. Crystal growth, 236, 363-370 (2002). https://doi.org/10.1016/S0022-0248(01)02164-9
  13. Naka, K., Tanaka, Y., and Chujo, Y., "Effect of Anionic Starburst Dendrimers on the Crystallization of CaCO3 in Aqueous Solution: Size Control of Spherical Vaterite Particles," Langmuir, 18, 3655-3658 (2002). https://doi.org/10.1021/la011345d
  14. Andreassen, J. and Hounslow, M. J., "Growth and Aggregation of Vaterite in Seeded-Batch Experiments," AIChE Journal, 50(11), 2772-2782 (2004). https://doi.org/10.1002/aic.10205
  15. Xie, A. J., Shen, Y. H., Zheng, C. Y., Yuan, Z. W., Zhu, X. M., and Yang, Y. M., "Crystal Growth of Calcium Carbonate with various Morphologies in different Amino Acid System," J. Crystal growth, 285, 436-443 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.039
  16. Shivkumara, C., Singh, P., Gupta, A., and Hegde, M. S., "Synthesis of Vaterite CaCO3 by direct Precipitation using Glycine and L-Alanine as directing Agents," Mater. Res. Bull., 41, 1455-1460 (2006). https://doi.org/10.1016/j.materresbull.2006.01.026
  17. Kim, J. H., Kim, J. M., Kim, W. S., and Kim, I. H., "Polymorphism of Calcium Carbonate Crystal by Silk Digested Amino Acid," Korean Chem. Eng. Res., 46(6), 1107-1112 (2008).
  18. Kim, J. H., Kim, J. M., Kim, W. S., and Kim, I. H., "Polymorphism of Calcium Carbonate Crystal by addition of various Amino," Korean Chem. Eng. Res., 47(2), 213-219 (2009).
  19. Kim, J. H., Song, S. M., Kim, J. M., Kim, W. S., and Kim, I. H., "CaCO3 Crystallization with feeding of Aspartic Acid," Korean J. Chem. Eng., 27(5), 1532-1537 (2010). https://doi.org/10.1007/s11814-010-0245-0
  20. Song, S. M., Seong, B. I., Koo, J. H., and Kim, I. H., "Effect of Aspartic Acid and Lysine on Polymorphism of Calcium Carbonate Crystal Formed by Gas-Liquid Reaction," Korean Chem. Eng. Res., 49(1), 109-113(2011). https://doi.org/10.9713/kcer.2011.49.1.109
  21. Song, S. M. and Kim, I. H., "Biomineralization of Calcium by adding Aspatic Acid and Lysozyme," Korean J. Chem. Eng., 28(8), 1749-1753 (2011). https://doi.org/10.1007/s11814-011-0022-8
  22. Han, H. K., Jeon, J. S., and Kim, M. S., "Phase Change of Calcium Carbonate by Adding Polymers," Korean Chem. Eng. Res., 50(2), 300-303 (2012) https://doi.org/10.9713/kcer.2012.50.2.300
  23. Shin, Y. J. and Han, H. K., "Phase Change of Calcium Carbonate by Temperature and RPM in Continuous Crystallizer," Korean Chem. Eng. Res., 57(5), 666-671 (2019).
  24. Bak, Y. C., "Quntitative Analysis of Calcium Carbonate by Peak Area of XRD," Korean Chem. Eng. Res., 60(4), 564-573 (2022).
  25. Andreassen, J., "Formation Mechanism and Morphology in Precipitation of Vaterite-nano-aggregation or Crystal Growth?," J. Crystal growth, 274, 256-264 (2005). https://doi.org/10.1016/j.jcrysgro.2004.09.090
  26. KRICT, "Manufacturing Method of mono Calcium Citrate using Shell and its Application," Korea Patent No 10-2411350 (2022).