DOI QR코드

DOI QR Code

Antibacterial mesoporous Sr-doped hydroxyapatite nanorods synthesis for biomedical applications

  • Gopalu Karunakaran (Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoul Tech)) ;
  • Eun-Bum Cho (Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoul Tech)) ;
  • Keerthanaa Thirumurugan (Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous)) ;
  • Govindan Suresh Kumar (Department of Physics, K.S. Rangasamy College of Arts and Science (Autonomous)) ;
  • Evgeny Kolesnikov (Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology "MISiS") ;
  • Selvakumar Boobalan (Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous))
  • Received : 2021.12.07
  • Accepted : 2023.04.10
  • Published : 2023.06.25

Abstract

Postsurgical infections are caused by implant-related pathogenic microorganisms that lead to graft rejection. Hence, an intrinsically antibacterial material is required to produce a biocompatible biomaterial with osteogenic properties that could address this major issue. Hence, this current research aims to make strontium-doped hydroxyapatite nanorods (SrHANRs) via an ethylene diamine tetraacetic acid (EDTA)-enable microwave mediated method using Anodontia alba seashells for biomedical applications. This investigation also perceives that EDTA acts as a soft template to accomplish Sr-doping and mesoporous structures in pure hydroxyapatite nanorods (HANRs). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis reveals the crystalline and mesoporous structures, and Brunauer-Emmett-Teller (BET) indicates the surface area of all the samples, including pure HANRs and doped HANRs. In addition, the biocidal ability was tested using various implant-related infectious bacteria pathogens, and it was discovered that Sr-doped HANRs have excellent biocidal properties. Furthermore, toxicity evaluation using zebrafish reports the non-toxic nature of the produced HANRs. Incorporating Sr2+ ions into the HAp lattice would enhance biocompatibility, biocidal activity, and osteoconductive properties. As a result, the biocompatible HANRs materials synthesized with Sr-dopants may be effective in bone regeneration and antibacterial in-built implant applications.

Keywords

Acknowledgement

E.-B. Cho and Gopalu Karunakaran were supported by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant no. 2022H1D3A2A02044281).

References

  1. Abifarin, J.K., Obada, D.O., Dauda, E.T. and Dodoo-Arhin, D. (2019), "Experimental data on the characterization of hydroxyapatite synthesized from biowastes", Data Br., 26, 104485. https://doi.org/10.1016/j.dib.2019.104485.
  2. Agalya, P., Saravanan, T., Kumar, G.S., Cholan, S., Karunakaran, G. and Van Minh, N. (2021a), "Surfactant-assisted microwave synthesis of luminescent/magnetic bifunctional hydroxyapatite nanorods for dual-model imaging", Optik, 225, 165564. https://doi.org/10.1016/j.ijleo.2020.165564.
  3. Agalya, P., Suresh Kumar, G., Srinivasan, R., Prabu, K.M., Karunakaran, G., Cholan, S., Kolesnikov, E. and Kim, M. (2021b), "Hydroxyapatite-based antibacterial bio-nanomaterials: An insight into the synthesis using mussel shell as a calcium source, physicochemical properties, and nanoindentation characteristics", Appl. Phys. A Mater. Sci. Proc., 127, 589. https://doi.org/10.1007/s00339-021-04739-8.
  4. Ahmed, T., Baidya, S., Sharma, B.C., Malek, M., Das, K.K., Acharjee, M., Munshi, S.K. and Noor, R. (2013), "Identification of drug-resistant bacteria among export quality shrimp samples in Bangladesh", Asian J. Microbiol. Biotechnol. Environ. Sci., 15, 655-660. https://doi.org/10.1093/ajcp/45.4_ts.493.
  5. Amudha, S., Ramya, J.R., Arul, K.T., Deepika, A., Sathiamurthi, P., Mohana, B., Asokan, K., Dong, C.L. and Kalkura, S.N. (2020), "Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass", Compos. Part B Eng., 196, 108099. https://doi.org/10.1016/j.compositesb.2020.108099
  6. Apsana, G., George, P.P., Devanna, N. and Yuvasravana, R. (2018), "Biomimetic synthesis and antibacterial properties of strontium oxide nanoparticles using ocimum sanctum leaf extract", Asian J. Pharm. Clin. Res., 11, 384-389. https://doi.org/10.22159/ajpcr.2018.v11i3.20858.
  7. Arcos, D. and Vallet-Regi, M. (2020), "Substituted hydroxyapatite coatings of bone implants", J. Mater. Chem. B., 8, 1781-1800. https://doi.org/10.1039/c9tb02710f.
  8. Ayyanar, C.B., Marimuthu, K., Gayathri, B. and Sankarrajan. (2020), "Characterization and in vitro cytotoxicity evaluation of fish scale and seashell derived nano-hydroxyapatite high-density polyethylene composite", Polym. Polym. Compos., 29(9), 1534-1542. https://doi.org/10.1177/0967391120981551.
  9. Baheiraei, N., Eyni, H., Bakhshi, B., Najafloo, R. and Rabiee, N. (2021), "Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration", Sci. Rep., 11, 8745. https://doi.org/10.1038/s41598-021-88058-1.
  10. Balakrishnan, S., Padmanabhan, V.P., Kulandaivelu, R., Sankara Narayanan Nellaiappan, T.S., Sagadevan, S., Paiman, S., Mohammad, F., Al-Lohedan, H.A., Obulapuram, P.K. and Oh, W.C. (2021) "Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite", Ceram. Int., 47, 5061-5070. https://doi.org/10.1016/j.ceramint.2020.10.084.
  11. Balaz, M., Balazova, L., Kovacova, M., Daneu, N., Salayova, A., Bedlovicova, Z. and Tkacikova, L. (2019), "The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles", Adv. Nano Res., 7(2), 125-134. https://doi.org/10.12989/anr.2019.7.2.125.
  12. Balu, S., Sundaradoss, M.V., Anra, S. and Jeevanandam, J. (2020), "Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study", Beilstein J. Nanotechnol., 11, 285-295. https://doi.org/10.3762/bjnano.11.21.
  13. Bhat, S., Uthappa, U.T., Altalhi, T., Jung, H.Y. and Kurkuri, M.D. (2021), "Functionalized porous hydroxyapatite scaffolds for tissue engineering applications: A focused review", ACS Biomater. Sci. Eng., 8(10), 4039-4076. https://doi.org/10.1021/acsbiomaterials.1c00438.
  14. Bhattacharjee, A., Hassan, R., Gupta, A., Verma, M., Murugan, P.A., Sengupta, P., Saravanan, M., Manna, I. and Balani, K. (2020), "Effect of Zn and Co doping on antibacterial efficacy and cytocompatibility of spark plasma sintered hydroxyapatite", J. Am. Ceram. Soc., 103, 4090-4100. https://doi.org/10.1111/jace.17077.
  15. Bolli, E., Kaciulis, S., Mezzi, A., Ambrogi, V., Nocchetti, M., Latterini, L., Di Michele, A. and Padeletti, G. (2021), "Hydroxyapatite functionalized calcium carbonate composites with ag nanoparticles: An integrated characterization study", Nanomaterials, 11(9), 2263. https://doi.org/10.3390/nano11092263.
  16. Brauer, D.S., Karpukhina, N., Kedia, G., Bhat, A., Law, R. V., Radecka, I. and Hill, R.G. (2013), "Bactericidal strontium-releasing injectable bone cements based on bioactive glasses", J. R. Soc. Interf., 10, 20120647. https://doi.org/10.1098/rsif.2012.0647.
  17. Butt, F.K., Hauenstein, P., Kosiahn, M., Garlyyev, B., Dao, M., Lang, A., Scieszka, D., Liang, Y. and Kreuzpaintner, W. (2020), "An innovative microwave-assisted method for the synthesis of mesoporous two dimensional g-C3N4: A revisited insight into a potential electrode material for supercapacitors", Microporous Mesoporous Mater., 294, 109853. https://doi.org/10.1016/j.micromeso.2019.109853.
  18. Cai, Z., Wang, X., Zhang, Z., Han, Y., Luo, J., Huang, M., Zhang, B. and Hou, Y. (2019), "Large-scale and fast synthesis of nano-hydroxyapatite powder by a microwave-hydrothermal method", RSC Adv., 9, 13623-13630. https://doi.org/10.1039/c9ra00091g.
  19. Carvalho, E.V., de Paula, D.M. andrade Neto, D.M., Costa, L.S., Dias, D.F., Feitosa, V.P. and Fechine, P.B.A. (2020), "Radiopacity and mechanical properties of dental adhesives with strontium hydroxyapatite nanofillers", J. Mech. Behav. Biomed. Mater., 101, 103447. https://doi.org/10.1016/j.jmbbm.2019.103447.
  20. Cheng, G., Zhang, Y., Yin, H., Ruan, Y., Sun, Y. and Lin, K. (2019), "Effects of strontium substitution on the structural distortion of hydroxyapatite by rietveld refinement and Raman Spectroscopy", Ceram. Int., 45, 11073-11078. https://doi.org/10.1016/j.ceramint.2019.02.194
  21. De Oliveira, L.M., Rossi, A.M. and Lopes, R.T. (2001), "Dose response of A-type carbonated apatites prepared under different conditions", Radiat. Phys. Chem., 61(3-6), 485-487. https://doi.org/10.1016/S0969-806X(01)00309-7.
  22. Deng, Y., Ye, C., Chen, G., Tao, B., Luo, H. and Li, N. (2019), "EDTA-assisted hydrothermal synthesis of flower-like CoSe2 nanorods as an efficient electrocatalyst for the hydrogen evolution reaction", J. Energy Chem., 28, 95-100. https://doi.org/10.1016/j.jechem.2018.01.022.
  23. F. El-Maghraby, H. and E. Greish, Y. (2021), "Preparation, structural characterization, and biomedical applications of gypsum-based nanocomposite bone cements", Novel Nanomater., Chapter 13. https://doi.org/10.5772/intechopen.94317.
  24. Feng, P., Wang, K., Shuai, Y., Peng, S., Hu, Y. and Shuai, C. (2022), "Hydroxyapatite nanoparticles in situ grown on carbon nanotube as a reinforcement for poly (ε-caprolactone) bone scaffold", Mater. Today Adv., 15, 100272. https://doi.org/10.1016/j.mtadv.2022.100272.
  25. Fu, J., Huang, L., Yu, Z., Zhang, Z. and Li, G. (2021), "Synthesis of hairpin DNA mediated Au-Ag bimetallic nanomushrooms for antibacterial application", Adv. Nano Res., 11, 73-81. https://doi.org/10.12989/anr.2021.11.1.073.
  26. Fuseini, M., El-Shazly, A.H. and Elkady, M. (2020), "Effects of doping on zeta potential and ph of polyaniline colloidal suspension", Mater. Sci. Forum, 1008, 114-120. https://doi.org/10.4028/www.scientific.net/MSF.1008.114.
  27. Garg, D., Matai, I. and Sachdev, A. (2021), "Toward designing of anti-infective hydrogels for orthopedic implants: From lab to clinic", ACS Biomater. Sci. Eng., 7(6), 1933-1961. https://doi.org/10.1021/acsbiomaterials.0c01408.
  28. George, R.S., Somasundaram, J., Balaji Ganesh, S. and Roy, A. (2020), "Synthesis of hydroxyapatite crystals from egg shells", Int. J. Res. Pharm. Sci. 11, 1406-1411. https://doi.org/10.26452/ijrps.v11iSPL3.3422.
  29. Glowniak, S., Szczesniak, B., Choma, J. and Jaroniec, M. (2021), "Advances in microwave synthesis of nanoporous materials", Adv. Mater., 33, 2103477. https://doi.org/10.1002/adma.202103477.
  30. Hwang, Y., Lee, J.S., An, H., Oh, H., Sung, D., Tae, G. and Choi, Il, W. (2021), "Hydroxyapatite-embedded levan composite hydrogel as an injectable dermal filler for considerable enhancement of biological efficacy", J. Ind. Eng. Chem., 104, 491-499. https://doi.org/10.1016/j.jiec.2021.08.040.
  31. Jang, Y., Lee, N., Kim, J.H., Park, Y. Il, and Piao, Y. (2018), "Shape-controlled synthesis of au nanostructures using edta tetrasodium salt and their photothermal therapy applications", Nanomaterials, 8(4), 252. https://doi.org/10.3390/nano8040252.
  32. Javed, R., Zia, M., Naz, S., Aisida, S.O., Ain, N. and Ao, Q. (2020), "Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects", J. Nanobiotechnol. 18, 172. https://doi.org/10.1186/s12951-020-00704-4.
  33. Jenkins, R. and Snyder, R.L. (1996), "Introduction to X-ray powder diffractometry", Introduction to X-ray Powder Diffractometry. https://doi.org/10.1002/9781118520994.
  34. Ju, P., Yu, Y., Wang, M., Zhao, Y., Zhang, D., Sun, C. and Han, X. (2016), "Synthesis of EDTA-assisted CeVO4 nanorods as robust peroxidase mimics towards colorimetric detection of H2O2", J. Mater. Chem. B, 4, 6316-6325. https://doi.org/10.1039/c6tb01881e.
  35. Ko, S.W., Lee, J.Y., Rezk, A.I., Park, C.H. and Kim, C.S. (2021), "In-situ cellulose-framework templates mediated monodispersed silver nanoparticles via facile UV-light photocatalytic activity for anti-microbial functionalization", Carbohydr. Polym., 269, 118255. https://doi.org/10.1016/j.carbpol.2021.118255.
  36. Koutu, V., Rajawat, S., Shastri, L. and Malik, M.M. (2019), "Apoptosis and inhibition of human epithelial cancer cells by ZnO nanoparticles synthesized using plant extract", Adv. Nano Res., 7, 231-239. https://doi.org/10.12989/anr.2019.7.4.231.
  37. Kumar, G.S., Karunakaran, G., Girija, E.K., Kolesnikov, E., Minh, N. Van, Gorshenkov, M. V. and Kuznetsov, D. (2018a), "Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method", Ceram. Int., 44, 11257-11264. https://doi.org/10.1016/j.ceramint.2018.03.170.
  38. Kumar, G.S., Muthu, D., Karunakaran, G., Karthi, S., Girija, E.K. and Kuznetsov, D. (2018b), "Curcuma longa tuber extract mediated synthesis of hydroxyapatite nanorods using biowaste as a calcium source for the treatment of bone infections", J. Sol-Gel Sci. Technol., 86, 610-616. https://doi.org/10.1007/s10971-018-4670-6.
  39. Liu, J., Rawlinson, S.C.F., Hill, R.G. and Fortune, F. (2016), "Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects", Dent. Mater., 32, 412-422. https://doi.org/10.1016/j.dental.2015.12.013.
  40. Liu, M., Shu, M., Yan, J., Liu, X., Wang, R., Hou, Z. and Lin, J. (2021), "Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction", Nanoscale, 13, 1181-1194. https://doi.org/10.1039/d0nr05608a.
  41. Liu, Q., Xue, Z. and Xu, D. (2020), "Molecular dynamics characterization of Sr-doped biomimetic hydroxyapatite nanoparticles", J. Phys. Chem. C, 124, 19704-19715. https://doi.org/10.1021/acs.jpcc.0c06391.
  42. Madhubala, V., Kalaivani, T., Kirubha, A., Prakash, J.S., Manigandan, V. and Dara, H.K. (2019), "Study of structural and magnetic properties of hydro/solvothermally synthesized α-Fe2O3 nanoparticles and its toxicity assessment in zebrafish embryos", Appl. Surf. Sci., 494, 391-400. https://doi.org/10.1016/j.apsusc.2019.07.090.
  43. Madubuonu, N., Aisida, S.O., Ahmad, I., Botha, S., Zhao, T. kai, Maaza, M. and Ezema, F.I. (2020), "Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity", Appl. Phys. A Mater. Sci. Proc., 126, 72. https://doi.org/10.1007/s00339-019-3249-6.
  44. Maleki-Ghaleh, H., Hossein Siadati, M., Fallah, A., Zarrabi, A., Afghah, F., Koc, B., Dalir Abdolahinia, E., Omidi, Y., Barar, J., Akbari-Fakhrabadi, A., Beygi-Khosrowshahi, Y. and Adibkia, K. (2021), "Effect of zinc-doped hydroxyapatite/graphene nanocomposite on the physicochemical properties and osteogenesis differentiation of 3D-printed polycaprolactone scaffolds for bone tissue engineering", Chem. Eng. J., 426, 131321. https://doi.org/10.1016/j.cej.2021.131321.
  45. Megarajan, S., Ameen, F., Singaravelu, D., Islam, M.A. and Veerappan, A. (2022), "Synthesis of N-myristoyltaurine stabilized gold and silver nanoparticles: Assessment of their catalytic activity, antimicrobial effectiveness and toxicity in zebrafish", Environ. Res. 212, 113159. https://doi.org/10.1016/j.envres.2022.113159.
  46. Miyajima, H., Touji, H. and Iijima, K. (2021), "Hydroxyapatite particles from simulated body fluids with different ph and their effects on mesenchymal stem cells", Nanomaterials, 11(10), 2517. https://doi.org/10.3390/nano11102517.
  47. Molino, G., Palmieri, M.C., Montalbano, G., Fiorilli, S. and Vitale-Brovarone, C. (2020), "Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: A short review", Biomed. Mater., 15, 022001. https://doi.org/10.1088/1748-605X/ab5f1a.
  48. Mondal, S., Dey, A. and Pal, U. (2016), "Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study", Adv. nano Res., 4(4), 295-307. https://doi.org/10.12989/anr.2016.4.4.295.
  49. Moore, H. and Lopez, N. (1970), "A Contribution to the Ecology of the Lamellibranch Tellina Alternata", Bull. Mar. Sci., 20, 971-979.
  50. Nakayama, M., Kajiyama, S., Kumamoto, A., Nishimura, T., Ikuhara, Y., Yamato, M. and Kato, T. (2018), "Stimuliresponsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions", Nat. Commun., 9, 568. https://doi.org/10.1038/s41467-018-02932-7.
  51. Naseri, H., Ghatee, M., Yazdani, A., Mohammadi, M. and Manafi, S. (2021), "Characterization of the 3YSZ/CNT/HAP coating on the Ti6Al4V alloy by electrophoretic deposition", J. Biomed. Mater. Res. Part B Appl., 109, 1395-1406. https://doi.org/10.1002/jbm.b.34799.
  52. Niehoff, N.M., Keil, A.P., O'Brien, K.M., Jackson, B.P., Karagas, M.R., Weinberg, C.R. and White, A.J. (2020), "Metals and trace elements in relation to body mass index in a prospective study of US women", Environ. Res., 184, 109396. https://doi.org/10.1016/j.envres.2020.109396.
  53. Nordin, J.A., Prajitno, D.H., Saidin, S., Nur, H. and Hermawan, H. (2015), "Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method", Mater. Sci. Eng. C, 51, 294-299. https://doi.org/10.1016/j.msec.2015.03.019.
  54. Oner, F.K., Alakent, B. and Soyer-Uzun, S. (2021), "Effect of silane A-174 modifications in the structure, chemistry, and compressive strength of PLA-HAP and PLA-β-TCP biocomposites: Toward the design of polymer-ceramic implants with high performance", ACS Appl. Polym. Mater., 3, 2432-2446. https://doi.org/10.1021/acsapm.1c00054.
  55. Paduraru, A.V., Oprea, O., Musuc, A.M., Vasile, B.S., Iordache, F. and Andronescu, E. (2021), "Influence of terbium ions and their concentration on the photoluminescence properties of hydroxyapatite for biomedical applications", Nanomaterials, 11(9), 2442. https://doi.org/10.3390/nano11092442.
  56. Pilmane, M., Salma-Ancane, K., Loca, D., Locs, J. and Berzina-Cimdina, L. (2017), "Strontium and strontium ranelate: Historical review of some of their functions", Mater. Sci. Eng. C 78, 1222-1230. https://doi.org/10.1016/j.msec.2017.05.042.
  57. Pors Nielsen, S. (2004), "The biological role of strontium", Bone, https://doi.org/10.1016/j.bone.2004.04.026.
  58. Punjabi, K., Mehta, S., Yedurkar, S., Jain, R., Mukherjee, S., Kale, A. and Deshpande, S. (2018), "Extracellular synthesis of silver nanoparticle by Pseudomonas hibiscicola-Mechanistic approach", Adv. Nano Res., 6(1), 81-92. https://doi.org/10.12989/anr.2018.6.1.081.
  59. Rabiei, M., Palevicius, A., Monshi, A., Nasiri, S., Vilkauskas, A. and Janusas, G. (2020), "Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction", Nanomaterials, 10, 1-21. https://doi.org/10.3390/nano10091627.
  60. Ranjeh, M., Masjedi-Arani, M., Salavati-Niasari, M. and Moayedi, H. (2020), "EDTA-modified sol-gel synthesis of monoclinic Li2MnO3 nanoparticles as an effective photocatalyst for degradation of organic dyes", J. Mol. Liq., 300, 112292. https://doi.org/10.1016/j.molliq.2019.112292.
  61. Sabeena, G.S.R.E.P., Alhadlaq, H.A., Mohan, R.G.A. and Ahamed, M. (2022), "Green and chemical synthesis of CuO nanoparticles: A comparative study for several in vitro bioactivities and in vivo toxicity in zebrafish embryos", J. King Saud Univ. Sci., 34, 102092. https://doi.org/10.1016/j.jksus.2022.102092.
  62. Shuai, C., Peng, B., Feng, P., Yu, L., Lai, R. and Min, A. (2022), "In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold", J. Adv. Res., 35, 13-24. https://doi.org/10.1016/j.jare.2021.03.009.
  63. Shuai, C., Yang, W., Feng, P., Peng, S. and Pan, H. (2021), "Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity", Bioact. Mater., 6, 490-502. https://doi.org/10.1016/j.bioactmat.2020.09.001.
  64. Siswanto, Hikmawati, D. and Aminatun, Supardi, A. (2020), "Molarity optimization of calcium hydroxide in the forming of bioceramic hydroxyapatite from nano coral by precipitation method", Moroccan J. Chem., 8, 24-31.  https://doi.org/10.48317/IMIST.PRSM/morjchem-v8i1.19121.
  65. Srinivasan, M., Venkatesan, M., Arumugam, V., Natesan, G., Saravanan, N., Murugesan, S., Ramachandran, S., Ayyasamy, R. and Pugazhendhi, A. (2019), "Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos", Proc. Biochem., 80, 197-202. https://doi.org/10.1016/j.procbio.2019.02.010.
  66. Suchankova, P., Kukleva, E., Nykl, E., Nykl, P., Sakmar, M., Vlk, M. and Kozempel, J. (2020), "Hydroxyapatite and titanium dioxide nanoparticles: Radiolabelling and in vitro stability of prospective theranostic nanocarriers for 223ra and 99mtc", Nanomaterials, 10, 1-12. https://doi.org/10.3390/nano10091632.
  67. Sudha, K.G., Ali, S., Karunakaran, G., Kowsalya, M., Kolesnikov, E. and Rajeshkumar, M.P. (2020), "Eco-friendly synthesis of ZnO nanorods using Cycas pschannae plant extract with excellent photocatalytic, antioxidant, and anticancer nanomedicine for lung cancer treatment", Appl. Organomet. Chem. 34, e5511. https://doi.org/10.1002/aoc.5511.
  68. Sun, W., Fan, J., Wang, S., Kang, Y., Du, J. and Peng, X. (2018), "Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors", ACS Appl. Mater. Interfaces 10, 7832-7840. https://doi.org/10.1021/acsami.7b19281.
  69. Supraja, N., Avinash, B. and Prasad, T.N.V.K.V. (2017), "Nelumbo nucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation", Adv. Nano Res., 5(4), 373-392. https://doi.org/10.12989/anr.2017.5.4.373.
  70. Supraja, N., Dhivya, J., Prasad, T.N.V.K.V. and David, E. (2018), "Synthesis, characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassum muticum) silver nanoparticles against Breast Cancer Cells (MCF 7) cell line", Adv. Nano Res., 6(2), 183-200. https://doi.org/10.12989/anr.2018.6.2.183.
  71. Szabo, A.S. (2017), "Investigation of the strontium content of foods and the biological role of strontium", Elelmiszervizsgalati Kozlemenyek, 63, 1774-1789.
  72. Tao, B., Lin, C., Guo, A., Yu, Y., Qin, X., Li, K., Tian, H., Yi, W., Lei, D. and Chen, L. (2021), "Fabrication of copper ionssubstituted hydroxyapatite/polydopamine nanocomposites with high antibacterial and angiogenesis effects for promoting infected wound healing", J. Ind. Eng. Chem., 104, 345-355. https://doi.org/10.1016/j.jiec.2021.08.035.
  73. Um, S.H., Chung, Y.W., Seo, Y., Seo, H., Ok, M.R., Kim, Y.C., Han, H.S., Chung, J.J., Edwards, J.R. and Jeon, H. (2020), "Robust hydroxyapatite coating by laser-induced hydrothermal synthesis", Adv. Funct. Mater., 30, 2005233. https://doi.org/10.1002/adfm.202005233.
  74. Vizhi, D.K., Supraja, N., Devipriya, A., Tollamadugu, N.V.K.V.P. and Babujanarthanam, R. (2016), "Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7)", Adv. Nano Res., 4, 129-143. https://doi.org/10.12989/anr.2016.4.2.129.
  75. Wang, L., Sun, Y., Li, C., Wang, Yaozu, Ma, X., Wang, Yandi, Li, S., Zhang, Z., Ma, P. and Cui, G. (2012), "Morphologycontrolled CaMoO4 nanorods via a facile microwave-assisted EDTA chelating agent process", Cryst. Res. Technol., 47, 1231-1236. https://doi.org/10.1002/crat.201200148.
  76. Wei, W. and Dai, H. (2021), "Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges", Bioact. Mater. 6, 4830-4855. https://doi.org/10.1016/j.bioactmat.2021.05.011.
  77. Wood, E.J. (2004), "Biochemistry: The chemical reactions of living cells", Biochem. Mol. Biol. Educ., 32, 62-63. https://doi.org/10.1002/bmb.2004.494032010298.
  78. Yan, L., Li, Y., Deng, Z.X., Zhuang, J. and Sun, X. (2001), "Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods", Int. J. Inorg. Mater., 3, 633-637. https://doi.org/10.1016/S1466-6049(01)00164-7.
  79. Yi, Y., Zhang, Y., Wang, Y., Shen, L., Jia, M., Huang, Y., Hou, Z. and Zhuang, G. (2014), "Ethylenediaminetetraacetic acid as capping ligands for highly water-dispersible iron oxide particles", Nanosc. Res. Lett., 9, 27. https://doi.org/10.1186/1556-276X-9-27.
  80. Yuan, Q., Zhang, Z., Yang, Y., Jian, Y., Li, R., Dai, X., Wu, W., Zhong, J. and Chen, C. (2021), "Synthesis, characterization and biological performance study of Sr-doped hydroxyapatite/chitosan composite coatings", Mater. Chem. Phys., 270, 124752. https://doi.org/10.1016/j.matchemphys.2021.124752.
  81. Zhou, Y., Li, W., Jiang, X., Sun, Y., Yang, H., Liu, Q., Cao, Y., Zhang, Y. and Cheng, H. (2021), "Synthesis of strontium (Sr) doped hydroxyapatite (HAp) nanorods for enhanced adsorption of Cr (VI) ions from wastewater", Ceram. Int., 47, 16730-16736. https://doi.org/10.1016/j.ceramint.2021.02.243.