Acknowledgement
Support for this research was provided by the U.S. Office of Naval Research (Grant Number N00014-21-1-2488; Dr. Yin Lu Young) and by Phases VIII and IX of the "Consortium on Cavitation Performance of High-Speed Propulsors."
References
- Bahaj, A.S., Molland, A.F., Chaplin, J.R. and Batten, W.M.J. (2007), "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank", Renew. Energ., 32(3), 407-426. https://doi.org/10.1016/j.renene.2006.01.012
- Baltazar, J., and Falcao de Campos, J.A.C. (2011), "Hydrodynamic analysis of a horizontal axis marine current turbine with a boundary element method", J. Offshore Mech. Arct., 133. http://dx.doi.org/10.1115/1.4003387.
- Ebrahimi, A., Seif, M.S. and Nouri-Borujerdi, A. (2019), "Hydrodynamic and acoustic performance analysis of marine propellers by combination of panel method and FW-H equations", Math. Comput. Appl., 24(81), 1-18.
- Farassat, F. (2007), "Derivation of Formulations 1 and 1A of Farassat: NASA/TM-2007-214853", Tech. Rep.
- Ffowcs-Williams, J.E. and Hawkings, D.L. (1969), "Sound generated by turbulence and surfaces in arbitrary motion", Philos. T. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 264(1151), 321-341.
- Gottsche, U., Lampe, T., Scharf, M. and Abdel-Maksoud, M. (2019), "Evaluation of underwater sound propagation of a catamaran with cavitating propellers", Proceedings of the 6th International Symposium on Marine Propulsors (SMP'19), Rome, Italy, May 26-30.
- Haxel, J., Zang, X., Martinez, J., Polagye, B., Staines, G., Deng, Z.D., Wosnik, M. and O'Byrne, P. (2022), "Underwater noise measurements around a tidal turbine in a busy port setting", J. Mar. Sci. Eng., 10(5). http://doi.org/10.3390/jmse10050632.
- Kerwin, J.E. and Lee, C. (1978), "Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory", Trans. Society of Naval Architects and Marine Engineers: Jersey City, NJ, USA, 86, 218-256.
- Kim, S. and Kinnas, S.A. (2022b), "Numerical prediction of propeller-induced noise in open water and ship behind conditions", Ocean Eng., 261, 112122. https://doi.org/10.1016/j.oceaneng.2022.112122.
- Kim, S. and Kinnas, S.A. (2022c), "Numerical prediction of underwater noise on a flat hull induced by twin or podded propeller systems", J. Sound Vib., 539, 117256. http://doi.org/10.1016/j.jsv.2022.117256.
- Kim, S., Kumar, K.S. and Kinnas, S.A. (2023), "Hydrodynamic analysis of ducted marine turbine: Study on the duct and turbine efficiency", Proceedings of the 28th SNAME Offshore Symposium, Houston, Texas, Mar. 8.
- Kim, S., Su, Y. and Kinnas, S.A. (2021), "A BEM/RANS interactive method applied to an axial tidal turbine farm", J. Ship Res., 65(4), 320-345. http://dx.doi.org/10.5957/JOSR.04180018.
- Kim, S., Wu, T.S. and Kinnas, S.A. (2022a), "Design and analysis of tidal turbines via a nonlinear optimization technique coupled with a BEM", Proceedings of the 27th SNAME Offshore Symposium, Houston, Texas, Feb. 22.
- Kinnas, S.A., Yu, X. and Tian, Y. (2012), "Prediction of propeller performance under high loading conditions with viscous/inviscid Interaction and a new wake alignment model", Proceedings of the 29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden, Aug. 26-31.
- Lloyd, T.P. (2013), "Large eddy simulations of inflow turbulence noise: application to tidal turbines", Ph.D. Dissertation, University of Southampton, United Kingdom.
- Lloyd, T.P., Turnock, S.R. and Humphrey, V.F. (2014), "Assessing the influence of inflow turbulence on noise and performance of a tidal turbine using large eddy simulations", Renew. Energ., 71, 742-754. https://doi.org/10.1016/j.renene.2014.06.011.
- Lossent, J., Lejart, M., Folegot, T., Clorennec, D., Di Iorio, L. and Gervaise, C. (2018), "Underwater operational noise level emitted by a tidal current turbine and its potential impact on marine fauna", Mar. Pollut. Bull., 131, 323-334. https://doi.org/10.1016/j.marpolbul.2018.03.024.
- Menendez Aran, D.H., Tian, Y. and Kinnas, S.A. (2019), "Effect of wake Alignment on turbine blade loading distribution and power coefficient", J. Offshore Mech. Arct., 141(4). http://dx.doi.org/10.1115/1.4041669.
- Otto, W., Rijpkema, D. and Vaz, G. (2012), "Viscous-flow calculations on an axial marine current turbine", Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, July 1-6.
- Risch, D., van Geel, N., Gillespie, D. and Wilson, B. (2020), "Characterisation of underwater operational sound of a tidal stream turbine", J. Acoust. Soc. Am., 147(4). http://doi.org/10.1121/10.0001124.
- Schmitt, P., Elsaesser, B., Coffin, M., Hood, J. and Starzmann, R. (2015), "Field testing a full-scale tidal turbine Part 3: Acoustic characteristics", Proceedings of the 11th European Wave and Tidal Energy Conference, Nantes, France, Sept. 9.
- Seol, H., Jung, B., Suh, J. and Lee, S. (2002), "Prediction of non-cavitating underwater propeller noise", J. Sound Vib., 257(110), 131-156. https://doi.org/10.1006/jsvi.2002.5035
- Shi, W., Atlar, M., Rosli, R., Aktas, B. and Norman, R. (2016), "Cavitation observations and noise measurements of horizontal axis tidal turbines with biomimetic blade leading-edge designs", Ocean Eng., 121, 143-155. https://doi.org/10.1016/j.oceaneng.2016.05.030.
- Testa, C., Lanniello, S. and Salvatore, F. (2018), "A Ffowcs Williams and Hawkings formulation for hydroacoustic analysis of propeller sheet cavitation", J. Sound Vib., 413, 421-441. https://doi.org/10.1016/j.jsv.2017.10.004
- Wu, T. S., Kim, S. and Kinnas, S. A. (2023), "Numerical prediction of skin friction coefficient by coupling a BEM with X-Foil: Effect on the hydrofoil and propeller performance", Proceedings of the 28th SNAME Offshore Symposium, Houston, Texas, Mar. 8.
- Young, Y.L., Motley, M.R. and Yeung, R.W. (2010), "Three-dimensional numerical modeling of the transient fluid-structural interaction response of tidal turbines", J. Offshore Mech Arct., 132(1). http://doi.org/10.1115/1.3160536.