참고문헌
- Alazwari, M.A., Daikh, A.A., Houari, M.S., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel. Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Allahkarami, F. (2022), "Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment", Eng. Comput., 38(1), 583-606. https://doi.org/10.1007/s00366-020-01169-7.
- Arefi, M., Bidgoli, E.M. and Rabczuk, T. (2019), "Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST", Eur. J. Mech. A-Solid., 77, 103802. https://doi.org/10.1016/j.euromechsol.2019.103802.
- Arshid, E., Amir, S. and Loghman, A. (2021), "Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates", Aerosp. Sci. Technol., 111, 106561. https://doi.org/10.1016/j.ast.2021.106561.
- Babaei, H., Kiani, Y. and Eslami, M.R. (2021), "Perturbation method for thermal post-buckling analysis of shear deformable FG-CNTRC beams with different boundary conditions", Int. J. Struct. Stab. Dyn., 21(13), 2150175. https://doi.org/10.1142/S0219455421501753.
- Blooriyan, S., Ansari, R., Darvizeh, A., Gholami, R. and Rouhi, H. (2019), "Postbuckling analysis of functionally graded graphene platelet-reinforced polymer composite cylindrical shells using an analytical solution approach", Appl. Math. Mech.-Eng., 40(7), 1001-1016. https://doi.org/10.1007/s10483-019-2498-8.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus, 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel. Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
- Cho, J.R. (2022), "Buckling analysis of functionally graded plates resting on elastic foundation by natural element method", Steel Compos. Struct., 44(2), 157-167. https://doi.org/10.12989/scs.2022.44.2.157.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
- Ding, H.X. and She, G.L. (2023a), "Nonlinear resonance of axially moving graphene platelet reinforced metal foam cylindrical shells with geometric imperfection", Arch. Civil Mech. Eng., 23, 97. http://doi.org/10.1007/s43452-023-00634-6.
- Ding, H.X. and She, G.L. (2023b), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlin. Dyn., 1-30. https://doi.org/10.1007/s11071-023-08564-x.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Do, V.N. and Lee, C.H. (2021), "Isogeometric analysis for buckling and postbuckling of graphene platelet reinforced composite plates in thermal environments", Eng. Struct., 244, 112746. https://doi.org/10.1016/j.engstruct.2021.112746.
- Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano. Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
- Ebrahimi, F., Shafiee, M.S. and Ahari, M.F. (2022), "Buckling analysis of single and double-layer annular graphene sheets in thermal environment", Eng. Comput., 39(1), 625-639. https://doi.org/10.1007/s00366-022-01634-5.
- Eipakchi, H. and Nasrekani, F.M. (2022), "Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness", Steel Compos. Struct., 43(2), 241-256. https://doi.org/10.12989/scs.2022.43.2.241.
- Ellali, M., Bouazza, M. and Amara, K. (2022), "Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theory", Arch. Appl. Mech., 92(3), 657-665. https://doi.org/10.1007/s00419-021-02094-x.
- Fani, M. and Taheri-Behrooz, F. (2022), "Analytical study of thermal buckling and post-buckling behavior of composite beams reinforced with SMA by Reddy Bickford theory", J. Intel. Mat. Syst. Struct., 33(1), 121-135. https://doi.org/10.1177/1045389X211011668.
- Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2021), "Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading", Struct. Eng. Mech., 78(1), 15-22. https://doi.org/10.12989/sem.2021.78.1.015.
- Gan, L.L. and She, G.L. (2023), "Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions", Geomech. Eng., 32(5), 541-551. https://doi.org/10.12989/gae.2023.32.5.541.
- Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
- Hieu, P.T. and Van Tung, H. (2021), "Thermal buckling and postbuckling of CNT-reinforced composite cylindrical shell surrounded by an elastic medium with tangentially restrained edges", J. Thermoplast. Compos., 34(7), 861-883. https://doi.org/ 10.1177/0892705719853611.
- Javani, M., Kiani, Y. and Eslami, M.R. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
- Jiao, P., Chen, Z.P., Ma, H., Cheng, Z., Gu, Y.A. and Tao, W.M. (2022), "Post-buckling behavior of rectangular multilayer FG-GPLRC plate with initial geometric defects subjected to non-uniform in-plane compression loads in thermal environment", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2119313.
- Karimiasl, M., Ebrahimi, F. and Akgoz, B. (2019), "Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading", Compos. Struct., 223, 110988. https://doi.org/10.1016/j.compstruct.2019.110988.
- Keleshteri, M.M. and Jelovica, J. (2022a), "Analytical assessment of nonlinear forced vibration of functionally graded porous higher order hinged beams", Compos. Struct., 298, 115994. https://doi.org/10.1016/j.compstruct.2022.115994.
- Keleshteri, M.M. and Jelovica, J. (2022b), "Analytical solution for vibration and buckling of cylindrical sandwich panels with improved FG metal foam core", Eng. Struct., 266, 114580. https://doi.org/10.1016/j.engstruct.2022.114580.
- Kiani, Y. (2020), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B. (2023), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel. Compos. Struct., 46(5) 649-658. https://doi.org/10.12989/scs.2023.46.5.649.
- Li, Z.C., Chen, Y.Z., Zheng, J.X. and Sun, Q. (2022), "Thermal-elastic buckling of the arch-shaped structures with FGP aluminum reinforced by composite graphene platelets", Thin Wall. Struct., 157, 107142. https://doi.org/10.1016/j.tws.2020.107142.
- Liu, Y.F., Hu, W.Y., Zhu, R.Z., Safaei, B., Qin, Z.Y. and Chu, F.L. (2022), "Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact", Aerosp. Sci. Technol., 121, 107321. https://doi.org/10.1016/j.ast.2021.107321.
- Long, V.T. and Tung, H.V. (2021), "Thermal nonlinear buckling of shear deformable functionally graded cylindrical shells with porosities", AIAA J., 59(6), 2233-2241. https://doi.org/10.2514/1.J060026.
- Long, V.T. and Tung, H.V. (2022), "Buckling and postbuckling of functionally graded porous material nearly cylindrical shells under external lateral pressure in thermal environments", Ships. Offshore Struct., 1-9. https://doi.org/10.1080/17445302.2022.2100666.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Mahani, R.B., Eyvazian, A. and Talebizadehsardari, P. (2020), "Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets", Thin Wall. Struct., 155, 106913. https://doi.org/10.1016/j.tws.2020.106913
- Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L.K. (2020), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/S1758825120500106.
- Moita, J.S., Araujo, A.L., Correia, V.F. and Soares, C.M. (2021), "Mechanical and thermal buckling of functionally graded axisymmetric shells", Compos. Struct, 261, 113318. https://doi.org/10.1016/j.compstruct.2020.113318.
- Nejati, M., Jafari, S.S., Dimitri, R. and Tornabene, F. (2022), "Thermal buckling and vibration analysis of SMA hybrid composite sandwich beams", Appl. Sci., 12(18), 9323. https://doi.org/10.3390/app12189323.
- Nguyen, T.P., Vu, M.D., Cao, V.D. and Vu, H.N. (2021), "Nonlinear torsional buckling of functionally graded graphene-reinforced composite (FG-GRC) laminated cylindrical shells stiffened by FG-GRC laminated stiffeners in thermal environment", Polym. Compos., 42(6), 3051-3063. https://doi.org/10.1002/pc.26038.
- Pour, M.A., Golmakani, M.E. and Malikan, M. (2021), "Thermal buckling analysis of circular bilayer graphene sheets resting on an elastic matrix based on nonlocal continuum mechanics", J. Appl. Comput. Mech., 7(4), 1862-1877. https://doi.org/10.22055/JACM.2019.31299.1859.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech-T., 51(4), 745. https://doi.org/10.1115/1.3167719.
- Shan, X.M. and Huang, A.Z. (2022), "Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dependent rectangular small-scale beam", Adv. Nano Res., 12(3), 281-290. https://doi.org/10.12989/anr.2022.12.3.281.
- She, G.L. (2021a), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mechanica Sinica, 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
- She, G.L., Liu, H.B. and Karami, B. (2021b), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Shen, H.S., Xiang, Y. and Lin, F. (2017), "Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations", Thin Wall. Struct., 118, 229-237. https://doi.org/10.1016/j.tws.2017.05.006.
- Sobhy, M., Abazid, M.A. and Al Mukahal, F.H.H. (2022), "Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions", Adv. Mech. Eng., 14(4), 16878132221091005. http://doi.org/10.1177/16878132221091005.
- Song, J.P. and She, G.L. (2023), "Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions", Struct. Eng. Mech., 86(3), 361-371. https://doi.org/10.12989/sem.2023.86.3.361.
- Song, M. T., Chen, L., Yang, J., Zhu, W.D. and Kitipornchai, S. (2019), "Thermal buckling and postbuckling of edge-cracked functionally graded multilayer graphene nanocomposite beams on an elastic foundation", Int. J. Mech. Sci., 161, 105040. https://doi.org/10.1016/j.ijmecsci.2019.105040.
- Song, R., Sahmani, S. and Safaei, B. (2021), "Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes", Appl. Math. Mech., 42(6), 771-786. https://doi.org/10.1007/s10483-021-2725-7.
- Trinh, M.C. and Kim, S.E. (2019), "Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment", Aerosp. Sci. Technol., 84, 672-685. https://doi.org/10.1016/j.ast.2018.09.018.
- Vu, H.N., Nguyen, T.P., Ho, S.L., Vu, M.D. and Cao, V.D. (2021), "Nonlinear buckling analysis of stiffened FG-GRC laminated cylindrical shells subjected to axial compressive load in thermal environment", Mech. Bas. Des. Struct., 1-17. https://doi.org/10.1080/15397734.2021.1932522.
- Wang, S., Mao, J., Zhang, W. and Haoming, L.U. (2022), "Nonlocal thermal buckling and postbuckling of functionally graded graphene nanoplatelet reinforced piezoelectric micro-plate", Appl. Math. Mech., 43(3), 14. https://doi.org/10.1007/s10483-022-2821-8.
- Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
- Wang, Y.W. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. https://doi.org/10.1016/j.compstruct.2022.115880.
- Wu, H.L., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/ 10.1016/j.matdes.2017.07.025.
- Xi, F. (2022), "Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets", Steel Compos. Struct., 44(1), 65-79. https://doi.org/10.12989/scs.2022.44.1.065.
- Xi, Y.Y., Qiang, L., Zhang, N.H. and Wu, J.Z. (2020), "Thermal-induced snap-through buckling of simply-supported functionally graded beams", Appl. Math. Mech., 41(12), 1821-1832. https://doi.org/10.1007/s10483-020-2691-7.
- Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Xu, X.L., Zhang, C.W., Khan, A., Sebaey, T.A. and Farouk, N. (2022), "Instability and post-instability examination due to the buckling of rotating nanocomposite beams in thermal ambient", Int. J. Mech. Mater. Des., 18(1), 87-103. https://doi.org/10.1007/s10999-021-09569-3.
- Yan, Y., Pagani, A. and Carrera, E. (2022), "Thermal buckling solutions of generic metallic and laminated structures: Total and updated Lagrangian formulations via refined beam elements", J. Therm. Stress., 45(8), 669-694. https://doi.org/10.1080/01495739.2022.2090471.
- Yang, S.W., Hao, Y.X., Zhang, W., Yang, L. and Liu, L.T. (2021), "Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory", Appl. Math. Mech., 42(7), 981-998. https://doi.org/10.1007/s10483-021-2747-9.
- Yas, M.H. and Rahimi, S. (2020), "Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method", Aerosp. Sci. Technol., 107, 106261. https://doi.org/10.1016/j.ast.2020.106261.
- Yas, M.H. and Rahimi, S. (2020), "Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets", Appl. Math. Mech., 41(8), 1209-1226. https://doi.org/10.1007/s10483-020-2634-6.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
- Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlin. Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2023.2180556.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
- Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhao, B., Long, C.Y., Peng, X.L., Chen, J., Liu, T., Zhang, Z.H. and Lai, A.D. (2022b), "Size effect and geometrically nonlinear effect on thermal post-buckling of micro-beams: A new theoretical analysis", Continuum. Mech, Therm., 34(2), 519-532. https://doi.org/10.1007/s00161-021-01067-3 .
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://doi.org/10.12989/anr.2022.13.5.465.