DOI QR코드

DOI QR Code

Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection

  • Jia-Qin Xu (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2023.02.08
  • Accepted : 2023.05.22
  • Published : 2023.07.10

Abstract

In the present work, thermal buckling and post-buckling behaviors of imperfect graphene platelet reinforced metal foams (GPRMFs) doubly curved shells are examined. Material properties of GPRMFs doubly curved shells are presumed to be the function of the thickness. Reddy' shell theory incorporating geometric nonlinearity is utilized to derive the governing equations. Various types of the graphene platelets (GPLs) distribution patterns and doubly curved shell types are taken into account. The nonlinear equations are discretized for the case of simply supported boundary conditions. The thermal post-buckling response are presented to analyze the effects of GPLs distribution patterns, initial geometric imperfection, GPLs weight fraction, porosity coefficient, porosity distribution forms, doubly curved shell types. The results show that these factors have significant effects on the thermal post-buckling problems.

Keywords

References

  1. Alazwari, M.A., Daikh, A.A., Houari, M.S., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel. Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
  2. Allahkarami, F. (2022), "Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment", Eng. Comput., 38(1), 583-606. https://doi.org/10.1007/s00366-020-01169-7.
  3. Arefi, M., Bidgoli, E.M. and Rabczuk, T. (2019), "Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST", Eur. J. Mech. A-Solid., 77, 103802. https://doi.org/10.1016/j.euromechsol.2019.103802.
  4. Arshid, E., Amir, S. and Loghman, A. (2021), "Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates", Aerosp. Sci. Technol., 111, 106561. https://doi.org/10.1016/j.ast.2021.106561.
  5. Babaei, H., Kiani, Y. and Eslami, M.R. (2021), "Perturbation method for thermal post-buckling analysis of shear deformable FG-CNTRC beams with different boundary conditions", Int. J. Struct. Stab. Dyn., 21(13), 2150175. https://doi.org/10.1142/S0219455421501753.
  6. Blooriyan, S., Ansari, R., Darvizeh, A., Gholami, R. and Rouhi, H. (2019), "Postbuckling analysis of functionally graded graphene platelet-reinforced polymer composite cylindrical shells using an analytical solution approach", Appl. Math. Mech.-Eng., 40(7), 1001-1016. https://doi.org/10.1007/s10483-019-2498-8.
  7. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus, 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
  8. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel. Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
  9. Cho, J.R. (2022), "Buckling analysis of functionally graded plates resting on elastic foundation by natural element method", Steel Compos. Struct., 44(2), 157-167. https://doi.org/10.12989/scs.2022.44.2.157.
  10. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
  11. Ding, H.X. and She, G.L. (2023a), "Nonlinear resonance of axially moving graphene platelet reinforced metal foam cylindrical shells with geometric imperfection", Arch. Civil Mech. Eng., 23, 97. http://doi.org/10.1007/s43452-023-00634-6.
  12. Ding, H.X. and She, G.L. (2023b), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlin. Dyn., 1-30. https://doi.org/10.1007/s11071-023-08564-x.
  13. Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
  14. Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
  15. Do, V.N. and Lee, C.H. (2021), "Isogeometric analysis for buckling and postbuckling of graphene platelet reinforced composite plates in thermal environments", Eng. Struct., 244, 112746. https://doi.org/10.1016/j.engstruct.2021.112746.
  16. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano. Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
  17. Ebrahimi, F., Shafiee, M.S. and Ahari, M.F. (2022), "Buckling analysis of single and double-layer annular graphene sheets in thermal environment", Eng. Comput., 39(1), 625-639. https://doi.org/10.1007/s00366-022-01634-5.
  18. Eipakchi, H. and Nasrekani, F.M. (2022), "Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness", Steel Compos. Struct., 43(2), 241-256. https://doi.org/10.12989/scs.2022.43.2.241.
  19. Ellali, M., Bouazza, M. and Amara, K. (2022), "Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theory", Arch. Appl. Mech., 92(3), 657-665. https://doi.org/10.1007/s00419-021-02094-x.
  20. Fani, M. and Taheri-Behrooz, F. (2022), "Analytical study of thermal buckling and post-buckling behavior of composite beams reinforced with SMA by Reddy Bickford theory", J. Intel. Mat. Syst. Struct., 33(1), 121-135. https://doi.org/10.1177/1045389X211011668.
  21. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2021), "Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading", Struct. Eng. Mech., 78(1), 15-22. https://doi.org/10.12989/sem.2021.78.1.015.
  22. Gan, L.L. and She, G.L. (2023), "Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions", Geomech. Eng., 32(5), 541-551. https://doi.org/10.12989/gae.2023.32.5.541.
  23. Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
  24. Hieu, P.T. and Van Tung, H. (2021), "Thermal buckling and postbuckling of CNT-reinforced composite cylindrical shell surrounded by an elastic medium with tangentially restrained edges", J. Thermoplast. Compos., 34(7), 861-883. https://doi.org/ 10.1177/0892705719853611.
  25. Javani, M., Kiani, Y. and Eslami, M.R. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
  26. Jiao, P., Chen, Z.P., Ma, H., Cheng, Z., Gu, Y.A. and Tao, W.M. (2022), "Post-buckling behavior of rectangular multilayer FG-GPLRC plate with initial geometric defects subjected to non-uniform in-plane compression loads in thermal environment", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2119313.
  27. Karimiasl, M., Ebrahimi, F. and Akgoz, B. (2019), "Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading", Compos. Struct., 223, 110988. https://doi.org/10.1016/j.compstruct.2019.110988.
  28. Keleshteri, M.M. and Jelovica, J. (2022a), "Analytical assessment of nonlinear forced vibration of functionally graded porous higher order hinged beams", Compos. Struct., 298, 115994. https://doi.org/10.1016/j.compstruct.2022.115994.
  29. Keleshteri, M.M. and Jelovica, J. (2022b), "Analytical solution for vibration and buckling of cylindrical sandwich panels with improved FG metal foam core", Eng. Struct., 266, 114580. https://doi.org/10.1016/j.engstruct.2022.114580.
  30. Kiani, Y. (2020), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687.
  31. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  32. Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B. (2023), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel. Compos. Struct., 46(5) 649-658. https://doi.org/10.12989/scs.2023.46.5.649.
  33. Li, Z.C., Chen, Y.Z., Zheng, J.X. and Sun, Q. (2022), "Thermal-elastic buckling of the arch-shaped structures with FGP aluminum reinforced by composite graphene platelets", Thin Wall. Struct., 157, 107142. https://doi.org/10.1016/j.tws.2020.107142.
  34. Liu, Y.F., Hu, W.Y., Zhu, R.Z., Safaei, B., Qin, Z.Y. and Chu, F.L. (2022), "Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact", Aerosp. Sci. Technol., 121, 107321. https://doi.org/10.1016/j.ast.2021.107321.
  35. Long, V.T. and Tung, H.V. (2021), "Thermal nonlinear buckling of shear deformable functionally graded cylindrical shells with porosities", AIAA J., 59(6), 2233-2241. https://doi.org/10.2514/1.J060026.
  36. Long, V.T. and Tung, H.V. (2022), "Buckling and postbuckling of functionally graded porous material nearly cylindrical shells under external lateral pressure in thermal environments", Ships. Offshore Struct., 1-9. https://doi.org/10.1080/17445302.2022.2100666.
  37. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  38. Mahani, R.B., Eyvazian, A. and Talebizadehsardari, P. (2020), "Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets", Thin Wall. Struct., 155, 106913. https://doi.org/10.1016/j.tws.2020.106913
  39. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L.K. (2020), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/S1758825120500106.
  40. Moita, J.S., Araujo, A.L., Correia, V.F. and Soares, C.M. (2021), "Mechanical and thermal buckling of functionally graded axisymmetric shells", Compos. Struct, 261, 113318. https://doi.org/10.1016/j.compstruct.2020.113318.
  41. Nejati, M., Jafari, S.S., Dimitri, R. and Tornabene, F. (2022), "Thermal buckling and vibration analysis of SMA hybrid composite sandwich beams", Appl. Sci., 12(18), 9323. https://doi.org/10.3390/app12189323.
  42. Nguyen, T.P., Vu, M.D., Cao, V.D. and Vu, H.N. (2021), "Nonlinear torsional buckling of functionally graded graphene-reinforced composite (FG-GRC) laminated cylindrical shells stiffened by FG-GRC laminated stiffeners in thermal environment", Polym. Compos., 42(6), 3051-3063. https://doi.org/10.1002/pc.26038.
  43. Pour, M.A., Golmakani, M.E. and Malikan, M. (2021), "Thermal buckling analysis of circular bilayer graphene sheets resting on an elastic matrix based on nonlocal continuum mechanics", J. Appl. Comput. Mech., 7(4), 1862-1877. https://doi.org/10.22055/JACM.2019.31299.1859.
  44. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech-T., 51(4), 745. https://doi.org/10.1115/1.3167719.
  45. Shan, X.M. and Huang, A.Z. (2022), "Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dependent rectangular small-scale beam", Adv. Nano Res., 12(3), 281-290. https://doi.org/10.12989/anr.2022.12.3.281.
  46. She, G.L. (2021a), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  47. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mechanica Sinica, 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
  48. She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
  49. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  50. She, G.L., Liu, H.B. and Karami, B. (2021b), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  51. Shen, H.S., Xiang, Y. and Lin, F. (2017), "Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations", Thin Wall. Struct., 118, 229-237. https://doi.org/10.1016/j.tws.2017.05.006.
  52. Sobhy, M., Abazid, M.A. and Al Mukahal, F.H.H. (2022), "Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions", Adv. Mech. Eng., 14(4), 16878132221091005. http://doi.org/10.1177/16878132221091005.
  53. Song, J.P. and She, G.L. (2023), "Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions", Struct. Eng. Mech., 86(3), 361-371. https://doi.org/10.12989/sem.2023.86.3.361.
  54. Song, M. T., Chen, L., Yang, J., Zhu, W.D. and Kitipornchai, S. (2019), "Thermal buckling and postbuckling of edge-cracked functionally graded multilayer graphene nanocomposite beams on an elastic foundation", Int. J. Mech. Sci., 161, 105040. https://doi.org/10.1016/j.ijmecsci.2019.105040.
  55. Song, R., Sahmani, S. and Safaei, B. (2021), "Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes", Appl. Math. Mech., 42(6), 771-786. https://doi.org/10.1007/s10483-021-2725-7.
  56. Trinh, M.C. and Kim, S.E. (2019), "Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment", Aerosp. Sci. Technol., 84, 672-685. https://doi.org/10.1016/j.ast.2018.09.018.
  57. Vu, H.N., Nguyen, T.P., Ho, S.L., Vu, M.D. and Cao, V.D. (2021), "Nonlinear buckling analysis of stiffened FG-GRC laminated cylindrical shells subjected to axial compressive load in thermal environment", Mech. Bas. Des. Struct., 1-17. https://doi.org/10.1080/15397734.2021.1932522.
  58. Wang, S., Mao, J., Zhang, W. and Haoming, L.U. (2022), "Nonlocal thermal buckling and postbuckling of functionally graded graphene nanoplatelet reinforced piezoelectric micro-plate", Appl. Math. Mech., 43(3), 14. https://doi.org/10.1007/s10483-022-2821-8.
  59. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  60. Wang, Y.W. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. https://doi.org/10.1016/j.compstruct.2022.115880.
  61. Wu, H.L., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/ 10.1016/j.matdes.2017.07.025.
  62. Xi, F. (2022), "Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets", Steel Compos. Struct., 44(1), 65-79. https://doi.org/10.12989/scs.2022.44.1.065.
  63. Xi, Y.Y., Qiang, L., Zhang, N.H. and Wu, J.Z. (2020), "Thermal-induced snap-through buckling of simply-supported functionally graded beams", Appl. Math. Mech., 41(12), 1821-1832. https://doi.org/10.1007/s10483-020-2691-7.
  64. Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
  65. Xu, X.L., Zhang, C.W., Khan, A., Sebaey, T.A. and Farouk, N. (2022), "Instability and post-instability examination due to the buckling of rotating nanocomposite beams in thermal ambient", Int. J. Mech. Mater. Des., 18(1), 87-103. https://doi.org/10.1007/s10999-021-09569-3.
  66. Yan, Y., Pagani, A. and Carrera, E. (2022), "Thermal buckling solutions of generic metallic and laminated structures: Total and updated Lagrangian formulations via refined beam elements", J. Therm. Stress., 45(8), 669-694. https://doi.org/10.1080/01495739.2022.2090471.
  67. Yang, S.W., Hao, Y.X., Zhang, W., Yang, L. and Liu, L.T. (2021), "Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory", Appl. Math. Mech., 42(7), 981-998. https://doi.org/10.1007/s10483-021-2747-9.
  68. Yas, M.H. and Rahimi, S. (2020), "Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method", Aerosp. Sci. Technol., 107, 106261. https://doi.org/10.1016/j.ast.2020.106261.
  69. Yas, M.H. and Rahimi, S. (2020), "Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets", Appl. Math. Mech., 41(8), 1209-1226. https://doi.org/10.1007/s10483-020-2634-6.
  70. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
  71. Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlin. Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
  72. Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2023.2180556.
  73. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
  74. Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
  75. Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  76. Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
  77. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  78. Zhao, B., Long, C.Y., Peng, X.L., Chen, J., Liu, T., Zhang, Z.H. and Lai, A.D. (2022b), "Size effect and geometrically nonlinear effect on thermal post-buckling of micro-beams: A new theoretical analysis", Continuum. Mech, Therm., 34(2), 519-532. https://doi.org/10.1007/s00161-021-01067-3 .
  79. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
  80. Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://doi.org/10.12989/anr.2022.13.5.465.