DOI QR코드

DOI QR Code

CCQC modal combination rule using load-dependent Ritz vectors

  • Xiangxiu Li (Institute of Geophysics, China Earthquake Administration) ;
  • Huating Chen (Earthquake Engineering Research & Test Center, Guangzhou University)
  • Received : 2021.07.26
  • Accepted : 2023.05.19
  • Published : 2023.07.10

Abstract

Response spectrum method is still an effective approach for the design of buildings with supplemental dampers. In practice, complex complete quadratic combination (CCQC) rule is always used in the response spectrum method to consider the effect of non-classical damping. The conventional CCQC rule is based on exact complex mode vectors. Sometimes the calculated complex mode vectors may be not excited by the external loading and errors in the structural responses always arise due to the mode truncation. Load-dependent Ritz (LDR) vectors are associated with the external loading and LDR vectors not excited can be automatically excluded. Also, contributions of higher modes are implicitly contained in the LDR vectors in terms of static responses. To improve the calculation efficiency and accuracy, LDR vectors are introduced in the CCQC rule in the present study. Firstly, the generation procedure of LDR vectors suitable for non-classical damping system is presented. Compared to the conventional LDR vectors, the LDR vectors herein are complex-valued and named as complex LDR (CLDR) vectors. Based on the CLDR vectors, the CCQC rule is then rederived and an improved response spectrum method is developed. Finally, the effectiveness of the proposed method in this paper is verified through three typical non-classical damping buildings. Numerical results show that the CLDR vector is superior to the complex mode with the same number in the calculation. Since the generation of CLDR vectors requires less computational cost and storage space, the method proposed in this paper offers an attractive alternative, especially for structures with a large number of degrees of freedom.

Keywords

Acknowledgement

This work was primarily supported by the National Key Research and Development Program of China (2022YFC3003505) and the National Natural Science Foundation of China (52078311).

References

  1. Augustyn, D., Pedersen, R.R., Tygesen, U.T., Ulriksen, M.D. and Sorensen, J.D. (2021), "Feasibility of modal expansion for virtual sensing in offshore wind jacket substructures", Marine Struct., 79, 103019. https://doi.org/10.1016/j.marstruc.2021.103019.
  2. Behnamfar, F. and Alibabaei, H. (2017), "Classical and non-classical time history and spectrum analysis of soil-structure interaction systems", Bull. Earthq. Eng., 15, 931-965. https://doi.org/10.1007/s10518-016-9991-7.
  3. Chen, H.C. and Taylor, R.L. (1990), "Solution of viscously damped linear systems using a set of load-dependent vectors", Earthq. Eng. Struct. Dyn., 19(5), 653-665. https://doi.org/10.1002/eqe.4290190503.
  4. Chen, H.T., Hao, H., Bi, K.M., Tan, P., Peng, L.Y. and Zhou, F.L. (2019), "Dynamic analysis of nonclassically damped systems with linear behavior using load-dependent Ritz vectors", Int. J. Struct. Stab. Dyn., 19(3), 1950022. https://doi.org/10.1142/S0219455419500226.
  5. Chen, H.T., Liu, Y.H. and Tan, P. (2020), "Generalized complex mode superposition approach for non-classically damped systems", Struct. Eng. Mech., 73(3), 271-286. https://doi.org/10.12989/sem.2020.73.3.271.
  6. Chen, H.T., Tan, P., Ma, H.T. and Zhou, F.L. (2017), "Response spectrum analysis considering non-classical damping in the base-isolated benchmark building", Struct. Eng. Mech., 64(4), 473-485. https://doi.org/10.12989/sem.2017.64.4.473.
  7. Clough, R.W. and Penzien, J. (1995), Dynamics of Structures, 3rd Edition, Computers and Structures Inc., California.
  8. Cornwell, R.E., Craig, R.R. and Johnston, C.P. (1983), "On the application of the mode acceleration method to structural dynamics problems", Earthq. Eng. Struct. Dyn., 11(5), 679-688. https://doi.org/10.1002/eqe.4290110507.
  9. Dona, M., Bernardi, E., Zonta, A., Tan, P. and Zhou, F. (2021), "Evaluation of optimal FVDs for inter-storey isolation systems based on surrogate performance models", Bull. Earthq. Eng., 19(11), 4587-4621. https://doi.org/10.1007/s10518-021-01134-9.
  10. Foss, F.K. (1958), "Co-ordinates which uncouple the linear dynamic systems", J. Appl. Mech. Trans., ASME, 24, 361-364. https://doi.org/10.1115/1.4011828.
  11. Fu, J., Wu, B., Wu, J., Deng, T., Pi, Y. and Xie, Z. (2018), "Wind resistant size optimization of geometrically nonlinear lattice structures using a modified optimality criterion method", Eng. Struct., 173, 573-588. https://doi.org/10.1016/j.engstruct.2018.07.017.
  12. Gao, Z., Zhao, M., Du, X. and Zhao, X. (2020), "Seismic soil-structure interaction analysis of structure with shallow foundation using response spectrum method", Bull. Earthq. Eng., 18, 3517-3543. https://doi.org/10.1007/s10518-020-00827-x.
  13. Gao, Z., Zhao, M., Du, X. and Zhong, Z. (2021), "A generalized response spectrum method for seismic response analysis of underground structure combined with viscous-spring artificial boundary", Soil Dyn. Earthq. Eng., 140, 106451. https://doi.org/10.1016/j.soildyn.2020.106451.
  14. Golub, G.H. and Van Loan C.F. (2013), Matrix Computations, Johns Hopkins University Press, Baltimore.
  15. Gupta, A.K. and Jaw, J.W. (1986), "Response spectrum method for nonclassically damped systems", Nucl. Eng. Des., 91, 161-169. https://doi.org/10.1016/0029-5493(86)90203-7.
  16. Han, X., Zhou, B., Gho, W. and Tan, S. (2019), "Effect of Ritz vectors on random seismic response of cantilever beam", J. Vib. Eng. Technol., 7, 321-333. https://doi.org/10.1007/s42417-019-00121-4.
  17. Hansteen, O.E. and Bell K. (1979), "On the accuracy of mode superposition analysis in structural dynamics", Earthq. Eng. Struct. Dyn., 7(5), 405-411. https://doi.org/10.1002/eqe.4290070502.
  18. Ibrahimbegovic, A., Chen, H.C., Wilson, E.L. and Taylor, R.L. (1990), "Ritz method for dynamic analysis of large discrete linear systems with non-proportional damping", Earthq. Eng. Struct. Dyn., 19(6), 877-889. https://doi.org/10.1002/eqe.4290190608.
  19. Igusa, T., Kiureghian, A.D. and Sackman, J.L. (1984), "Modal decomposition method for stationary response of nonclassically damped systems", Earthq. Eng. Struct. Dyn., 12, 121-136. https://doi.org/10.1002/eqe.4290120109.
  20. Kaul, M.K. (1978), "Stochastic characterization of earthquakes through their response spectrum", Earthq. Eng. Struct. Dyn., 6, 497-509. https://doi.org/10.1002/eqe.4290060506.
  21. Kiureghian, A.D. (1980), "Structural response to stationary excitation", J. Eng. Mech. Div., ASCE, 106(6), 1195-1213. https://doi.org/10.1061/JMCEA3.0002659.
  22. Liu, G., Lian, J., Liang, C., Li, G. and Hu, J. (2016), "An improved complex multiple-support response spectrum method for the non-classically damped linear system with coupled damping", Bull. Earthq. Eng., 14, 161-184. https://doi.org/10.1007/s10518-015-9818-y.
  23. Midas Civil, 8.3.2 Documentation (2015), MIDAS Information Technology Corporation.
  24. Ministry of Housing and Urban-rural Development of the People's Republic of China (2021), Standard for Seismic Isolation Design of Building, (GB51408-2021), China Architecture and Building Press, Beijing. (in Chinese)
  25. Mitseas, L. and Beer, M. (2019), "Modal decomposition method for response spectrum based analysis of nonlinear and non-classically damped systems", Mech. Syst. Signal Pr., 131, 469-485. https://doi.org/10.1016/j.ymssp.2019.05.056.
  26. Ohtori, Y., Christenson, R.E., Spencer Jr, B.F. and Dyke, S.J. (2004), "Benchmark control problems for seismically excited nonlinear buildings", J. Eng. Mech., 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366).
  27. Ruiz, P. and Penzien, J. (1969), "Probabilistic study of behavior of structures during earthquakes", Report of Earthquake Engineering Research Center, No. EERC 69-3, University of California, Berkeley.
  28. SAP2000, 18.2.0, Documentation (2018), Computers and Structures, Inc.
  29. Singh, M.P. (1980), "Seismic response by SRSS for non-proportional damping", J. Eng. Mech. Div., ASCE, 106(6), 1405-1419. https://doi.org/10.1243/03093247V154235.
  30. Traill-Nash, R.W. (1950), "An analysis of the response of a damped dynamical system subjected to impress forces", Australian Department Supply, Aeronautica Research Laboratory, Report SM.151.
  31. Vanmarcke, E.H. (1972), "Properties of spectral moments with applications to random vibration", J. Eng. Mech., 98, 425-446. https://doi.org/10.1061/JMCEA3.0001593.
  32. Villaverde, R. (1988), "Rosenblueth's modal combination rule for systems with non-classical damping", Earthq. Eng. Struct. Dyn., 16, 315-328. https://doi.org/10.1002/eqe.4290160303.
  33. Wang, Z. and Der Kiureghian, A. (2014), "Multiple-support response spectrum analysis using load-dependent Ritz vectors", Earthq. Eng. Struct. Dyn., 43, 2283-2297. https://doi.org/10.1002/eqe.2447.
  34. Wilkinson, J.H. (1965), The Algebraic Eigenvalue Problem, Clarendon Press, Oxford.
  35. Wilson, E.L., Yuan, M.W. and Dickens, J.M. (1982), "Dynamic analysis by direct superposition of Ritz vectors", Earthq. Eng. Struct. Dyn., 10(6), 813-821. https://doi.org/10.1002/eqe.4290100606.
  36. Yu, R.F. and Zhou, X.Y. (2008), "Response spectrum analysis for non-classically damped linear system with multiple-support excitations", Bull. Earthq. Eng., 6(2), 261-284. https://doi.org/10.1007/s10518-007-9048-z.
  37. Yu, R.F., Wang, L., Liu, H. and Zhou, X.Y. (2005), "The CCQC3 method for multi-component seismic response of non-classically damped irregular structures", Structures Congress, New York, April.
  38. Zhou, X.Y., Yu, R.F. and Dong, D. (2004), "Complex mode superposition algorithm for seismic responses of non-classically damped linear MDOF system", J. Earthq. Eng., 8(4), 597-641. https://doi.org/10.1142/S1363246904001602.