References
- Afshin, S. and Yas, M.H. (2020), "Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness", Appl. Math. Mech., 41, 785-804. https://doi.org/10.1007/S10483-020-2610-7
- Alibeigloo, A. and Emtehani, A. (2015), "Static and free vibration analyzes of carbon nanotube-reinforced composite plate using differential quadrature method", Meccanica, 50, 61-76. https://doi.org/10.1007/S11012-014-0050-7
- Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct.,113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
- Ansari, R., Torabi, J. and Hassani, R. (2019), "A comprehensive study on the free vibration of arbitrary shaped thick functionally graded CNT-reinforced composite plates", Eng. Struct., 181, 653-669. https://doi.org/10.1016/j.engstruct.2018.12.049
- Arani, A. G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
- Barretta R., Caporale A., Faghidian S.A., Luciano R., Marotti de Sciarra F. and Medaglia C. M. (2019), "A stress-driven local-nonlocal mixture model for Timoshenko nano-beams", Compos. Part B Eng., 164, 590-598. https://doi.org/10.1016/j.compositesb.2019.01.012
- Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B Eng. 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
- Bisheh, H., Wu, N. and Rabczuk, T. (2020), "Free vibration analysis of smart laminated carbon nanotube-reinforced composite cylindrical shells with various boundary conditions in hygrothermal environments", Thin Walled Struct., 149, 106500. https://doi.org/10.1016/J.TWS.2019.106500
- Borjalilou, V., Taati, E. and Ahmadian, M.T. (2019), "Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions", SN Appl. Sci., 1, 1323. https://doi.org/10.1007/S42452-019-1359-6
- Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concr., 25, 155-166. https://doi.org/10.12989/cac.2020.25.2.155
- Chamran, S., Chen, C.-S., Fung, C.-P., Wang, H. and Chen, W.-R. (2022), "Dynamic response of functionally graded carbon nanotube-reinforced hybrid composite plates", J. Appl. Comput. Mech., 8, 182-195. https://doi.org/10.22055/JACM.2021.37884.3108
- Chiroiu, V., Munteanu, L. and Gliozzi, A.S. (2010), "Application of cosserat theory to the modelling of reinforced carbon nananotube beams", Comput. Mater. Contin., 19, 1-16. https://doi.org/10.3970/cmc.2010.019.001
- Civalek, O . and Avcar, M. (2020), "Free vibration and buckling analyzes of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput. 1, 1-33. https://doi.org/10.1007/s00366-020-01168-8
- Civalek, O . and Baltacioglu, A.K. (2018), "Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method", Compos. Struct., 203, 458-465. https://doi.org/10.1016/j.compstruct.2018.07.037
- Deepak, B.P., Ganguli, R. and Gopalakrishnan, S. (2012), "Dynamics of rotating composite beams: A comparative study between CNT reinforced polymer composite beams and laminated composite beams using spectral finite elements", Int. J. Mech. Sci., 64, 110-126. https://doi.org/10.1016/j.ijmecsci.2012.07.009
- Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179. https://doi.org/10.12989/anr.2017.5.2.179
- El-Ashmawy, A.M. and Xu, Y. (2021), "Combined effect of carbon nanotubes distribution and orientation on functionally graded nano-composite beams using finite element analysis" Mater. Res. Express, 8. https://doi.org/10.1088/2053-1591/ABC773
- Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Feng, T., Liu, N., Wang, S., Qin, C., Shi, S., Zeng, X. and Liu, G. (2021), "Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review", Adv. Nano Res., 10(6), 559-576. https://doi.org/10.12989/anr.2021.10.6.559
- Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Methods Appl. Mech. Eng., 193, 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- Hedayati, H. and Sobhani Aragh, B. (2012), "Influence of graded agglomerated CNTs on vibration of CNT-reinforced annular sectorial plates resting on Pasternak foundation", Appl. Math. Comput., 218, 8715-8735. https://doi.org/10.1016/J.AMC.2012.01.080
- Heshmati M. and Yas M. H. (2013), "Free vibration analysis of functionally graded CNT-reinforced nano-composite beam using Eshelby-Mori-Tanaka approach", J. Mech. Sci. Technol., 27, 3403-3408. https://doi.org/10.1007/S12206-013-0862-8
- Heshmati, M., Yas, M.H. and Daneshmand, F. (2015), "A comprehensive study on the vibrational behavior of CNT-reinforced composite beams", Compos. Struct., 125, 434-448. https://doi.org/10.1016/j.compstruct.2015.02.033
- Hussain, M., Naeem, M. N., Asghar, S., & Tounsi, A. (2020), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Adv. Nano Res., 8(4), 307-322. https://doi.org/10.12989/anr.2020.8.4.307
- Iijima S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Jalaei, M.H., Thai, H.T. and Civalek, O. (2022), "On viscoelastic transient response of magnetically imperfect functionally graded nanobeams", Int. J. Eng. Sci., 172, 103629. https://doi.org/10.1016/j.ijengsci.2022.103629
- Jam, J.E. and Kiani, Y. (2015), "Buckling of pressurized functionally graded carbon nanotube reinforced conical shells", Compos. Struct., 125, 586-595. https://doi.org/10.1016/j.compstruct.2015.02.052
- Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F. (2016), "Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes", Int. J. Mech. Sci., 108-109, 157-165. https://doi.org/10.1016/j.ijmecsci.2016.02.006
- Kamarian, S., Shakeri, M., Karimi, B. and Pourasghar, A. (2016), "Free vibration analysis and design optimization of nanocomposite-laminated beams using various higher order beam theories and imperialist competitive algorithm", Polym. Compos., 37, 2442-2451. https://doi.org/10.1002/PC.23429
- Kaw, A. (2006), Mechanics Composite of Materials, CRC Press, Boca Raton.
- Ke L.L., Yang J. and Kitipornchai S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
- Khadimallah, M.A., Hussain, M., Taj, M., Ayed, H. and Tounsi, A. (2021), "Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory", Adv. Nano Res., 10(2), 165-174. https://doi.org/10.12989/anr.2021.10.2.165
- Khadir, A.I., Daikh, A.A. and Eltaher, M.A. (2021), "Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621
- Khilari, S., Kochar, S., Sanvordenker, R. and Thomas B. (2018), "Free vibration analysis of carbon nanotube reinforced composite Timoshenko beam", Prog. Ind. Ecol., 12, 78-92. https://doi.org/10.1504/PIE.2018.095873
- Kumar, P. and Srinivas, J. (2017), "Free vibration, bending and buckling of a FG-CNT reinforced composite beam Comparative analysis with hybrid laminated composite beam", Multidiscipl. Model. Mater. Struct., 13, 590-611. https://doi.org/10.1108/MMMS-05-2017-0032
- Lau, K.T., Gu, C., Gao, G.H., Ling, H.Y. and Reid, S.R. (2004), "Stretching process of single- and multi-walled carbon nanotubes for nano-composite applications", Carbon N. Y., 42, 426-428. https://doi.org/10.1016/j.carbon.2003.10.040
- Lau, A.K.T. and Hui, D. (2002), "The revolutionary creation of new advanced materials - Carbon nanotube composites", Compos. Part B Eng., 33, 263-277. https://doi.org/10.1016/S1359-8368(02)00012-4
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct. 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Lin, F. and Xiang, Y. (2014a), "Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams", Int. J. Struct. Stab. Dyn. 14, 1350056. https://doi.org/10.1142/S0219455413500569
- Lin, F. and Xiang, Y. (2014b), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38, 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008
- Loos, M. R. (2014), "Carbon Nanotube Reinforced Composites: CNR Polymer Science and Technology", Carbon Nanotub. Reinf. Compos. CNR Polym. Sci. Technol., 1-289. https://doi.org/10.1016/C2012-0-06123-6
- Mahmoodi, S.N., Jalili N. and Khadem S.E. (2005), "Passive nonlinear vibrations of a directly excited nanotube-reinforced composite cantilever beam", Am. Soc. Mech. Eng. Dyn. Syst. Control Div. DSC 74 DSC, 1913-1920. https://doi.org/10.1115/IMECE2005-81608
- Mahmoodi, M.J., Maleki, M. and Hassanzadeh-Aghdam, M.K. (2018), "Static bending and free vibration analysis of hybrid fuzzy-fiber reinforced nano-composite beam-A multi-scale modeling", Int. J. Appl. Mech., 10. https://doi.org/10.1142/S1758825118500539
- Mayandi, K. and Jeyaraj, P. (2015), "Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 229, 13-28. https://doi.org/10.1177/1464420713493720
- Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., 19, 309-322. https://doi.org/10.12989/SSS.2017.19.3.309
- Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Alavi, S.M.A., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyzes of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nano-composite", Steel Compos. Struct., 29, 405-422. https://doi.org/10.12989/SCS.2018.29.3.405
- Mohammadimehr M., Monajemi A.A. and Afshari H. (2020), "Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams", Microsyst. Technol., 26, 3085-3099. https://doi.org/10.1007/S00542-017-3682-4
- Mohseni, A. and Shakouri, M. (2019), "Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 233, 2478-2489. https://doi.org/10.1177/1464420719866222
- Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., 25, 315-326. https://doi.org/10.12989/scs.2017.25.3.315
- Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and buckling of functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. https://doi.org/10.12989/anr.2021.10.6.539
- Nejati M., Eslampanah A. and Najafizadeh M. (2018), "Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load, Int. J. Appl. Mech., 8, 1650008. https://doi.org/10.1142/S1758825116500083
- Rashad, A.M. (2017), "Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials", Constr. Build. Mater., 153, 81-101. https://doi.org/10.1016/j.conbuildmat.2017.07.089
- Ramezani, M., Kim, Y.H. and Sun, Z. (2021), "Elastic modulus formulation of cementitious materials incorporating carbon nanotubes: Probabilistic approach" Constr. Build. Mater., 275, 122092. https://doi.org/10.1016/j.conbuildmat.2020.122092
- Ramezani, M., Dehghani, A. and Sherif, M. M. (2022), "Carbon nanotube reinforced cementitious composites: A comprehensive review", Constr. Build. Mater., 315, 125100. https://doi.org/10.1016/j.conbuildmat.2021.125100
- Rezaiee-Pajand, M., Masoodi, A.R. and Rajabzadeh-Safaei, N. (2019), "Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures", Steel Compos. Struct., 30, 493-516. https://doi.org/10.12989/scs.2019.30.6.493
- Reddy, J.N. (2003a), Mechanics of Laminated Composite Plates and Shells, CRC Press, Boca Raton. https://doi.org/10.1201/b12409
- Reddy, J.N. (2003b), Theory And Analysis Of Elastic Plates And Shells, CRC Press, Boca Raton.
- Saifuddin, N., Raziah, A.Z., Junizah, A.R. (2013), "Carbon nanotubes: A review on structure and their interaction with proteins", J. Chem., 676815. https://doi.org/10.1155/2013/676815
- Seidi, J. and Kamarian, S. (2017), "Free vibrations of non-uniform CNT/fiber/polymer nano-composite beams", Curved Layer. Struct., 4, 21-30. https://doi.org/10.1515/CLS-2017-0003
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B Eng. 43, 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
- Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments" Comput. Methods Appl. Mech. Eng., 213-216, 196-205. https://doi.org/10.1016/J.CMA.2011.11.025
- Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002
- Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions", Sci. Rep., 7, 1-18. https://doi.org/10.1038/s41598-017-12596-w
- Thomas B. and Suresh T.P. (2017), "Vibration and buckling analysis of functionally graded carbon nanotube reinforced composite beams", Int. J. Civ. Eng. Technol., 8, 74-84.
- Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
- Vinson, J.R. and Sierakowski R.L. (2008), The Behavior of Structures Composed of Composite Materials (Solid Mechanics and its Applications), Kluwer Academic Publishers.
- Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2019), "Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method", Front. Struct. Civil Eng., 13, 324-336. https://doi.org/10.1007/S11709-018-0466-6
- Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005
- Xu, J., Yang, Z., Yang, J. and Li, Y. (2021), "Free vibration analysis of rotating FG-CNT reinforced composite beams in thermal environments with general boundary conditions", Aerosp. Sci. Technol., 118. https://doi.org/10.1016/J.AST.2021.107030
- Yang, J., Huang, X.H. and Shen, H.S. (2020), "Nonlinear flexural behavior of temperature-dependent FG-CNTRC laminated beams with negative Poisson's ratio resting on the Pasternak foundation", Eng. Struct. 207, 110250. https://doi.org/10.1016/j.engstruct.2020.110250
- Yas, M.H. and Samadi N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation" Int. J. Press. Vessel. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Zerrouki, Rachid;Karas, Abdelkader;Zidour M. (2020), "Critical buckling analyzes of nonlinear FG-CNT reinforced nano-composite beam", Adv. Nano Res., 9(3), 211-220. https://doi.org/10.12989/anr.2020.9.3.211
- Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78, 117-124. https://doi.org/10.12989/sem.2021.78.2.117