Hybrid Coupling FSI 방법을 이용한 Lock-in 현상 해석

Analysis of Lock-in Phenomenon using Hybrid Coupling Fluid-Structure Interaction Analysis Methods

  • 최원석 (한국해양대학교 해양공학과)
  • 발행 : 2023.06.15

초록

키워드

참고문헌

  1. Blake WK. Mechanics offlow-induced sound and vibration, Volume 2: Complex flow-structure interactions. Academic Press, 2017. 
  2. Paidoussis MP, Price SJ and De Langre E. Fluid-structure interactions: cross-flow-induced instabilities. Cambridge University Press, 2010. 
  3. Hoskoti L, Misra A, and Sucheendran MM. Frequency lock-in during nonlinear vibration of an airfoil coupled with van der Pol Oscillator.Journal of Fluids and Structures 2020; 92: 102776. 
  4. Motta V, Guardone A and Quaranta G. Influence of airfoil thickness on unsteady aerodynamic loads on pitching airfoils. Journal of Fluid Mechanics 2015; 774: 460-487.  https://doi.org/10.1017/jfm.2015.280
  5. Di Domenico N, Groth C, Wade A, Berg T, and Biancolinia ME. Fluid structure interaction analysis: vortex shedding induced vibrations. Procedia Structural Integrity 2018; 8: 422-432.  https://doi.org/10.1016/j.prostr.2017.12.042
  6. Lee AH. Fluid structure interaction analysis: vortex shedding induced vibrations. PhD Thesis, Pennsylvania State University, 2014. 
  7. Young YL, Chae EJ and Akcabay DT. Hybrid algorithmfor modeling of fluid-structure interaction in incompressible, viscous flows. Acta Mechanica Sinica 2012; 28(4): 1030-1041.  https://doi.org/10.1007/s10409-012-0118-3
  8. Chae EJ, AkcabayDT,Lelong A, AstolfiJA, and Young YL. Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils. Physics of Fluids 2016; 28(7): 075102. 
  9. Chae EJ, Akcabay DT and Young YL. Influence of flow-induced bend-twist coupling on the natural vibration responses of flexible hydrofoils. Journal of Fluids and Structures 2017; 69: 323-340.  https://doi.org/10.1016/j.jfluidstructs.2016.12.008
  10. Blake WK. Excitation of Plates and Hydrofoils byTrailing Edge Flows. Journal of Vibration, Acoustics, Stress, and Reliability in Design 1984; 106(3): 351-363.  https://doi.org/10.1115/1.3269201
  11. Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter. National Aeronautics and Space Administration: Washington, DC, USA 1979; 291-311. 
  12. Kussner HG and Jones WP. Nonstationary theory of airfoils of finite thicknessin incompressible flow. AGARD Manual on Aeroelasticity, Part 2 (ed. Jones, W. P.) 1960. 
  13. Blevins R.D., Flow-Induced Vibrations. Van Nostrand Reinhold, New York, 1990. 
  14. Zobeiri A, Ausoni P, Avellan F, and Farhat M. How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration. Journal of Fluids and Structures 2012; 32: 78-89.  https://doi.org/10.1016/j.jfluidstructs.2011.12.003
  15. Mittal Rand Balachandar S. Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders. Physics of Fluids 1995; 7(8): 1841-1865.  https://doi.org/10.1063/1.868500
  16. Ausoni P. Turbulent vortex shedding from a blunt trailing edge hydrofoil. EPFL, 2009.