DOI QR코드

DOI QR Code

Microtubule Acetylation-Specific Inhibitors Induce Cell Death and Mitotic Arrest via JNK/AP-1 Activation in Triple-Negative Breast Cancer Cells

  • Suyeon Ahn (Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Ahreum Kwon (Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Youngsoo Oh (Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Sangmyung Rhee (Department of Life Science, Chung-Ang University) ;
  • Woo Keun Song (Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology)
  • Received : 2022.12.20
  • Accepted : 2023.01.19
  • Published : 2023.06.30

Abstract

Microtubule acetylation has been proposed as a marker of highly heterogeneous and aggressive triple-negative breast cancer (TNBC). The novel microtubule acetylation inhibitors GM-90257 and GM-90631 (GM compounds) cause TNBC cancer cell death but the underlying mechanisms are currently unknown. In this study, we demonstrated that GM compounds function as anti-TNBC agents through activation of the JNK/AP-1 pathway. RNA-seq and biochemical analyses of GM compound-treated cells revealed that c-Jun N-terminal kinase (JNK) and members of its downstream signaling pathway are potential targets for GM compounds. Mechanistically, JNK activation by GM compounds induced an increase in c-Jun phosphorylation and c-Fos protein levels, thereby activating the activator protein-1 (AP-1) transcription factor. Notably, direct suppression of JNK with a pharmacological inhibitor alleviated Bcl2 reduction and cell death caused by GM compounds. TNBC cell death and mitotic arrest were induced by GM compounds through AP-1 activation in vitro. These results were reproduced in vivo, validating the significance of microtubule acetylation/JNK/AP-1 axis activation in the anti-cancer activity of GM compounds. Moreover, GM compounds significantly attenuated tumor growth, metastasis, and cancer-related death in mice, demonstrating strong potential as therapeutic agents for TNBC.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF-2022R1F1A1062852, W.K.S.; NRF-2020R1A2C2007389, S.R.), Chung-Ang University research grant in 2022 (S.R.), and the Energy AI Convergence Research & Development Program through the National IT Industry Promotion Agency of Korea (NIPA) funded by the Ministry of Science and ICT (S0254-22-1005, W.K.S.).

References

  1. Aher, A. and Akhmanova, A. (2018). Tipping microtubule dynamics, one protofilament at a time. Curr. Opin. Cell Biol. 50, 86-93. https://doi.org/10.1016/j.ceb.2018.02.015
  2. Androic, I., Kramer, A., Yan, R., Rodel, F., Gatje, R., Kaufmann, M., Strebhardt, K., and Yuan, J. (2008). Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol. BMC Cancer 8, 391.
  3. Bates, D. and Eastman, A. (2017). Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br. J. Clin. Pharmacol. 83, 255-268. https://doi.org/10.1111/bcp.13126
  4. Bodakuntla, S., Jijumon, A.S., Villablanca, C., Gonzalez-Billault, C., and Janke, C. (2019). Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol. 29, 804-819. https://doi.org/10.1016/j.tcb.2019.07.004
  5. Boggs, A.E., Vitolo, M.I., Whipple, R.A., Charpentier, M.S., Goloubeva, O.G., Ioffe, O.B., Tuttle, K.C., Slovic, J., Lu, Y.L., Mills, G.B., et al. (2015). alpha-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res. 75, 203-215.
  6. Brenton, J.D., Carey, L.A., Ahmed, A.A., and Caldas, C. (2005). Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol. 23, 7350-7360. https://doi.org/10.1200/JCO.2005.03.3845
  7. Cavigelli, M., Dolfi, F., Claret, F.X., and Karin, M. (1995). Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14, 5957-5964. https://doi.org/10.1002/j.1460-2075.1995.tb00284.x
  8. Chen, Y., Zhang, J., Hu, X.C., Wang, B.Y., Wang, Z.H., Wang, L.P., Cao, J., Tao, Z.H., Du, Y.Q., Zhao, Y.N., et al. (2020). Maintenance chemotherapy is effective in patients with metastatic triple negative breast cancer after first-line platinum-based chemotherapy. Ann. Palliat. Med. 9, 3018-3027. https://doi.org/10.21037/apm-20-578
  9. Deng, T. and Karin, M. (1994). c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 371, 171-175. https://doi.org/10.1038/371171a0
  10. Eferl, R. and Wagner, E.F. (2003). AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer 3, 859-868. https://doi.org/10.1038/nrc1209
  11. Eshun-Wilson, L., Zhang, R., Portran, D., Nachury, M.V., Toso, D.B., Lohr, T., Vendruscolo, M., Bonomi, M., Fraser, J.S., and Nogales, E. (2019). Effects of alpha-tubulin acetylation on microtubule structure and stability. Proc. Natl. Acad. Sci. U. S. A. 116, 10366-10371. https://doi.org/10.1073/pnas.1900441116
  12. Fan, F. and Podar, K. (2021). The role of AP-1 transcription factors in plasma cell biology and multiple myeloma pathophysiology. Cancers (Basel) 13, 2326.
  13. Fan, Y., Mok, C.K.P., Chan, M.C.W., Zhang, Y., Nal, B., Kien, F., Bruzzone, R., and Sanyal, S. (2017). Cell cycle-independent role of cyclin D3 in host restriction of influenza virus infection. J. Biol. Chem. 292, 5070-5088. https://doi.org/10.1074/jbc.M117.776112
  14. Foa, R., Norton, L., and Seidman, A.D. (1994). Taxol (paclitaxel): a novel anti-microtubule agent with remarkable anti-neoplastic activity. Int. J. Clin. Lab. Res. 24, 6-14. https://doi.org/10.1007/BF02592403
  15. Foulkes, W.D., Smith, I.E., and Reis-Filho, J.S. (2010). Triple-negative breast cancer. N. Engl. J. Med. 363, 1938-1948. https://doi.org/10.1056/NEJMra1001389
  16. Garces de Los Fayos Alonso, I., Liang, H.C., Turner, S.D., Lagger, S., Merkel, O., and Kenner, L. (2018). The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers (Basel) 10, 93.
  17. Gazon, H., Barbeau, B., Mesnard, J.M., and Peloponese, J.M., Jr. (2018). Hijacking of the AP-1 signaling pathway during development of ATL. Front. Microbiol. 8, 2686.
  18. Gewirtz, D.A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics Adriamycin and daunorubicin. Biochem. Pharmacol. 57, 727-741. https://doi.org/10.1016/S0006-2952(98)00307-4
  19. Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., and Siegel, R.L. (2022). Breast cancer statistics, 2022. CA Cancer J. Clin. 72, 524-541. https://doi.org/10.3322/caac.21754
  20. Gkouveris, I. and Nikitakis, N.G. (2017). Role of JNK signaling in oral cancer: a mini review. Tumour Biol. 39, 1010428317711659.
  21. Halazonetis, T.D., Georgopoulos, K., Greenberg, M.E., and Leder, P. (1988). c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55, 917-924. https://doi.org/10.1016/0092-8674(88)90147-X
  22. Ishida, M., Ueki, M., Morishita, J., Ueno, M., Shiozawa, S., and Maekawa, N. (2015). T-5224, a selective inhibitor of c-Fos/activator protein-1, improves survival by inhibiting serum high mobility group box-1 in lethal lipopolysaccharide-induced acute kidney injury model. J. Intensive Care 3, 49.
  23. Janke, C. and Bulinski, J.C. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773-786. https://doi.org/10.1038/nrm3227
  24. Kalebic, N., Sorrentino, S., Perlas, E., Bolasco, G., Martinez, C., and Heppenstall, P.A. (2013). alphaTAT1 is the major alpha-tubulin acetyltransferase in mice. Nat. Commun. 4, 1962.
  25. Kashyap, A.S., Fernandez-Rodriguez, L., Zhao, Y., Monaco, G., Trefny, M.P., Yoshida, N., Martin, K., Sharma, A., Olieric, N., Shah, P., et al. (2019). GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses. Cell Rep. 28, 3367-3380.e8. https://doi.org/10.1016/j.celrep.2019.08.057
  26. Kim, K. and Kim, Y.J. (2022). RhoBTB3 regulates proliferation and invasion of breast cancer cells via Col1a1. Mol. Cells 45, 631-639. https://doi.org/10.14348/molcells.2022.2037
  27. Ko, P., Choi, J.H., Song, S., Keum, S., Jeong, J., Hwang, Y.E., Kim, J.W., and Rhee, S. (2021). Microtubule acetylation controls MDA-MB-231 breast cancer cell invasion through the modulation of endoplasmic reticulum stress. Int. J. Mol. Sci. 22, 6018.
  28. Kolomeichuk, S.N., Terrano, D.T., Lyle, C.S., Sabapathy, K., and Chambers, T.C. (2008). Distinct signaling pathways of microtubule inhibitors--vinblastine and Taxol induce JNK-dependent cell death but through AP-1-dependent and AP-1-independent mechanisms, respectively. FEBS J. 275, 1889-1899. https://doi.org/10.1111/j.1742-4658.2008.06349.x
  29. Kwon, A., Lee, G.B., Park, T., Lee, J.H., Ko, P., You, E., Ahn, J.H., Eom, S.H., Rhee, S., and Song, W.K. (2020). Potent small-molecule inhibitors targeting acetylated microtubules as anticancer agents against triple-negative breast cancer. Biomedicines 8, 338.
  30. Li, W., Whaley, C.D., Bonnevier, J.L., Mondino, A., Martin, M.E., Aagaard-Tillery, K.M., and Mueller, D.L. (2001). CD28 signaling augments Elk-1-dependent transcription at the c-fos gene during antigen stimulation. J. Immunol. 167, 827-835. https://doi.org/10.4049/jimmunol.167.2.827
  31. Li, Y., Zhan, Z., Yin, X., Fu, S., and Deng, X. (2021). Targeted therapeutic strategies for triple-negative breast cancer. Front. Oncol. 11, 731535.
  32. Loong, H.H. and Yeo, W. (2014). Microtubule-targeting agents in oncology and therapeutic potential in hepatocellular carcinoma. Onco Targets Ther. 7, 575-585.
  33. Loukil, A., Cheung, C.T., Bendris, N., Lemmers, B., Peter, M., and Blanchard, J.M. (2015). Cyclin A2: at the crossroads of cell cycle and cell invasion. World J. Biol. Chem. 6, 346-350. https://doi.org/10.4331/wjbc.v6.i4.346
  34. Magiera, M.M. and Janke, C. (2014). Post-translational modifications of tubulin. Curr. Biol. 24, R351-R354. https://doi.org/10.1016/j.cub.2014.03.032
  35. Mittendorf, E.A., Philips, A.V., Meric-Bernstam, F., Qiao, N., Wu, Y., Harrington, S., Su, X., Wang, Y., Gonzalez-Angulo, A.M., Akcakanat, A., et al. (2014). PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res. 2, 361-370. https://doi.org/10.1158/2326-6066.CIR-13-0127
  36. Nagai, T., Ikeda, M., Chiba, S., Kanno, S., and Mizuno, K. (2013). Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase. J. Cell Sci. 126, 4369-4380. https://doi.org/10.1242/jcs.127209
  37. Nekooki-Machida, Y., Nakakura, T., Nishijima, Y., Tanaka, H., Arisawa, K., Kiuchi, Y., Miyashita, T., and Hagiwara, H. (2018). Dynamic localization of α-tubulin acetyltransferase ATAT1 through the cell cycle in human fibroblastic KD cells. Med. Mol. Morphol. 51, 217-226. https://doi.org/10.1007/s00795-018-0195-x
  38. O'Shea, E.K., Rutkowski, R., and Kim, P.S. (1992). Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell 68, 699-708. https://doi.org/10.1016/0092-8674(92)90145-3
  39. Oh, S., You, E., Ko, P., Jeong, J., Keum, S., and Rhee, S. (2017). Genetic disruption of tubulin acetyltransferase, alpha TAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/beta-catenin signaling. Biochem. Biophys. Res. Commun. 482, 8-14. https://doi.org/10.1016/j.bbrc.2016.11.039
  40. Ohtsubo, M., Theodoras, A.M., Schumacher, J., Roberts, J.M., and Pagano, M. (1995). Human cyclin E, a nuclear protein essential for the G(1)-to-S phase transition. Mol. Cell. Biol. 15, 2612-2624. https://doi.org/10.1128/MCB.15.5.2612
  41. Pardoll, D.M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252-264. https://doi.org/10.1038/nrc3239
  42. Price, M.A., Cruzalegui, F.H., and Treisman, R. (1996). The p38 and ERK MAP kinase pathways cooperate to activate Ternary Complex Factors and c-fos transcription in response to UV light. EMBO J. 15, 6552-6563. https://doi.org/10.1002/j.1460-2075.1996.tb01046.x
  43. Rasamizafy, S.F., Delsert, C., Rabeharivelo, G., Cau, J., Morin, N., and van Dijk, J. (2021). Mitotic acetylation of microtubules promotes centrosomal PLK1 recruitment and is required to maintain bipolar spindle homeostasis. Cells 10, 1859.
  44. Rashid, M.U., Muhammad, N., Bajwa, S., Faisal, S., Tahseen, M., Bermejo, J.L., Amin, A., Loya, A., and Hamann, U. (2016). High prevalence and predominance of BRCA1 germline mutations in Pakistani triple-negative breast cancer patients. BMC Cancer 16, 673.
  45. Shaulian, E. and Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131-E136. https://doi.org/10.1038/ncb0502-e131
  46. Soppina, V., Herbstman, J.F., Skiniotis, G., and Verhey, K.J. (2012). Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS One 7, e48204.
  47. Thomas, E., Gopalakrishnan, V., Hegde, M., Kumar, S., Karki, S.S., Raghavan, S.C., and Choudhary, B. (2016). A novel resveratrol based tubulin inhibitor induces mitotic arrest and activates apoptosis in cancer cells. Sci. Rep. 6, 34653.
  48. Tricker, E., Arvand, A., Kwan, R., Chen, G.Y., Gallagher, E., and Cheng, G. (2011). Apoptosis induced by cytoskeletal disruption requires distinct domains of MEKK1. PLoS One 6, e17310.
  49. van Dam, H. and Castellazzi, M. (2001). Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis. Oncogene 20, 2453-2464. https://doi.org/10.1038/sj.onc.1204239
  50. van Dam, H., Duyndam, M., Rottier, R., Bosch, A., de Vries-Smits, L., Herrlich, P., Zantema, A., Angel, P., and van der Eb, A.J. (1993). Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J. 12, 479-487. https://doi.org/10.1002/j.1460-2075.1993.tb05680.x
  51. Viale, P.H. (2020). The American Cancer Society's Facts & Figures: 2020 edition. J. Adv. Pract. Oncol. 11, 135-136.
  52. Wahba, H.A. and El-Hadaad, H.A. (2015). Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med. 12, 106-116.
  53. Wang, Q.M., Lv, L., Tang, Y., Zhang, L., and Wang, L.F. (2019). MMP-1 is overexpressed in triple-negative breast cancer tissues and the knockdown of MMP-1 expression inhibits tumor cell malignant behaviors in vitro. Oncol. Lett. 17, 1732-1740.
  54. Wang, T.H., Wang, H.S., Ichijo, H., Giannakakou, P., Foster, J.S., Fojo, T., and Wimalasena, J. (1998). Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J. Biol. Chem. 273, 4928-4936. https://doi.org/10.1074/jbc.273.9.4928
  55. Weston, C.R. and Davis, R.J. (2007). The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142-149. https://doi.org/10.1016/j.ceb.2007.02.001