Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF-2022R1F1A1062852, W.K.S.; NRF-2020R1A2C2007389, S.R.), Chung-Ang University research grant in 2022 (S.R.), and the Energy AI Convergence Research & Development Program through the National IT Industry Promotion Agency of Korea (NIPA) funded by the Ministry of Science and ICT (S0254-22-1005, W.K.S.).
References
- Aher, A. and Akhmanova, A. (2018). Tipping microtubule dynamics, one protofilament at a time. Curr. Opin. Cell Biol. 50, 86-93. https://doi.org/10.1016/j.ceb.2018.02.015
- Androic, I., Kramer, A., Yan, R., Rodel, F., Gatje, R., Kaufmann, M., Strebhardt, K., and Yuan, J. (2008). Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol. BMC Cancer 8, 391.
- Bates, D. and Eastman, A. (2017). Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br. J. Clin. Pharmacol. 83, 255-268. https://doi.org/10.1111/bcp.13126
- Bodakuntla, S., Jijumon, A.S., Villablanca, C., Gonzalez-Billault, C., and Janke, C. (2019). Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol. 29, 804-819. https://doi.org/10.1016/j.tcb.2019.07.004
- Boggs, A.E., Vitolo, M.I., Whipple, R.A., Charpentier, M.S., Goloubeva, O.G., Ioffe, O.B., Tuttle, K.C., Slovic, J., Lu, Y.L., Mills, G.B., et al. (2015). alpha-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res. 75, 203-215.
- Brenton, J.D., Carey, L.A., Ahmed, A.A., and Caldas, C. (2005). Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol. 23, 7350-7360. https://doi.org/10.1200/JCO.2005.03.3845
- Cavigelli, M., Dolfi, F., Claret, F.X., and Karin, M. (1995). Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14, 5957-5964. https://doi.org/10.1002/j.1460-2075.1995.tb00284.x
- Chen, Y., Zhang, J., Hu, X.C., Wang, B.Y., Wang, Z.H., Wang, L.P., Cao, J., Tao, Z.H., Du, Y.Q., Zhao, Y.N., et al. (2020). Maintenance chemotherapy is effective in patients with metastatic triple negative breast cancer after first-line platinum-based chemotherapy. Ann. Palliat. Med. 9, 3018-3027. https://doi.org/10.21037/apm-20-578
- Deng, T. and Karin, M. (1994). c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 371, 171-175. https://doi.org/10.1038/371171a0
- Eferl, R. and Wagner, E.F. (2003). AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer 3, 859-868. https://doi.org/10.1038/nrc1209
- Eshun-Wilson, L., Zhang, R., Portran, D., Nachury, M.V., Toso, D.B., Lohr, T., Vendruscolo, M., Bonomi, M., Fraser, J.S., and Nogales, E. (2019). Effects of alpha-tubulin acetylation on microtubule structure and stability. Proc. Natl. Acad. Sci. U. S. A. 116, 10366-10371. https://doi.org/10.1073/pnas.1900441116
- Fan, F. and Podar, K. (2021). The role of AP-1 transcription factors in plasma cell biology and multiple myeloma pathophysiology. Cancers (Basel) 13, 2326.
- Fan, Y., Mok, C.K.P., Chan, M.C.W., Zhang, Y., Nal, B., Kien, F., Bruzzone, R., and Sanyal, S. (2017). Cell cycle-independent role of cyclin D3 in host restriction of influenza virus infection. J. Biol. Chem. 292, 5070-5088. https://doi.org/10.1074/jbc.M117.776112
- Foa, R., Norton, L., and Seidman, A.D. (1994). Taxol (paclitaxel): a novel anti-microtubule agent with remarkable anti-neoplastic activity. Int. J. Clin. Lab. Res. 24, 6-14. https://doi.org/10.1007/BF02592403
- Foulkes, W.D., Smith, I.E., and Reis-Filho, J.S. (2010). Triple-negative breast cancer. N. Engl. J. Med. 363, 1938-1948. https://doi.org/10.1056/NEJMra1001389
- Garces de Los Fayos Alonso, I., Liang, H.C., Turner, S.D., Lagger, S., Merkel, O., and Kenner, L. (2018). The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers (Basel) 10, 93.
- Gazon, H., Barbeau, B., Mesnard, J.M., and Peloponese, J.M., Jr. (2018). Hijacking of the AP-1 signaling pathway during development of ATL. Front. Microbiol. 8, 2686.
- Gewirtz, D.A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics Adriamycin and daunorubicin. Biochem. Pharmacol. 57, 727-741. https://doi.org/10.1016/S0006-2952(98)00307-4
- Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., and Siegel, R.L. (2022). Breast cancer statistics, 2022. CA Cancer J. Clin. 72, 524-541. https://doi.org/10.3322/caac.21754
- Gkouveris, I. and Nikitakis, N.G. (2017). Role of JNK signaling in oral cancer: a mini review. Tumour Biol. 39, 1010428317711659.
- Halazonetis, T.D., Georgopoulos, K., Greenberg, M.E., and Leder, P. (1988). c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55, 917-924. https://doi.org/10.1016/0092-8674(88)90147-X
- Ishida, M., Ueki, M., Morishita, J., Ueno, M., Shiozawa, S., and Maekawa, N. (2015). T-5224, a selective inhibitor of c-Fos/activator protein-1, improves survival by inhibiting serum high mobility group box-1 in lethal lipopolysaccharide-induced acute kidney injury model. J. Intensive Care 3, 49.
- Janke, C. and Bulinski, J.C. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773-786. https://doi.org/10.1038/nrm3227
- Kalebic, N., Sorrentino, S., Perlas, E., Bolasco, G., Martinez, C., and Heppenstall, P.A. (2013). alphaTAT1 is the major alpha-tubulin acetyltransferase in mice. Nat. Commun. 4, 1962.
- Kashyap, A.S., Fernandez-Rodriguez, L., Zhao, Y., Monaco, G., Trefny, M.P., Yoshida, N., Martin, K., Sharma, A., Olieric, N., Shah, P., et al. (2019). GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses. Cell Rep. 28, 3367-3380.e8. https://doi.org/10.1016/j.celrep.2019.08.057
- Kim, K. and Kim, Y.J. (2022). RhoBTB3 regulates proliferation and invasion of breast cancer cells via Col1a1. Mol. Cells 45, 631-639. https://doi.org/10.14348/molcells.2022.2037
- Ko, P., Choi, J.H., Song, S., Keum, S., Jeong, J., Hwang, Y.E., Kim, J.W., and Rhee, S. (2021). Microtubule acetylation controls MDA-MB-231 breast cancer cell invasion through the modulation of endoplasmic reticulum stress. Int. J. Mol. Sci. 22, 6018.
- Kolomeichuk, S.N., Terrano, D.T., Lyle, C.S., Sabapathy, K., and Chambers, T.C. (2008). Distinct signaling pathways of microtubule inhibitors--vinblastine and Taxol induce JNK-dependent cell death but through AP-1-dependent and AP-1-independent mechanisms, respectively. FEBS J. 275, 1889-1899. https://doi.org/10.1111/j.1742-4658.2008.06349.x
- Kwon, A., Lee, G.B., Park, T., Lee, J.H., Ko, P., You, E., Ahn, J.H., Eom, S.H., Rhee, S., and Song, W.K. (2020). Potent small-molecule inhibitors targeting acetylated microtubules as anticancer agents against triple-negative breast cancer. Biomedicines 8, 338.
- Li, W., Whaley, C.D., Bonnevier, J.L., Mondino, A., Martin, M.E., Aagaard-Tillery, K.M., and Mueller, D.L. (2001). CD28 signaling augments Elk-1-dependent transcription at the c-fos gene during antigen stimulation. J. Immunol. 167, 827-835. https://doi.org/10.4049/jimmunol.167.2.827
- Li, Y., Zhan, Z., Yin, X., Fu, S., and Deng, X. (2021). Targeted therapeutic strategies for triple-negative breast cancer. Front. Oncol. 11, 731535.
- Loong, H.H. and Yeo, W. (2014). Microtubule-targeting agents in oncology and therapeutic potential in hepatocellular carcinoma. Onco Targets Ther. 7, 575-585.
- Loukil, A., Cheung, C.T., Bendris, N., Lemmers, B., Peter, M., and Blanchard, J.M. (2015). Cyclin A2: at the crossroads of cell cycle and cell invasion. World J. Biol. Chem. 6, 346-350. https://doi.org/10.4331/wjbc.v6.i4.346
- Magiera, M.M. and Janke, C. (2014). Post-translational modifications of tubulin. Curr. Biol. 24, R351-R354. https://doi.org/10.1016/j.cub.2014.03.032
- Mittendorf, E.A., Philips, A.V., Meric-Bernstam, F., Qiao, N., Wu, Y., Harrington, S., Su, X., Wang, Y., Gonzalez-Angulo, A.M., Akcakanat, A., et al. (2014). PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res. 2, 361-370. https://doi.org/10.1158/2326-6066.CIR-13-0127
- Nagai, T., Ikeda, M., Chiba, S., Kanno, S., and Mizuno, K. (2013). Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase. J. Cell Sci. 126, 4369-4380. https://doi.org/10.1242/jcs.127209
- Nekooki-Machida, Y., Nakakura, T., Nishijima, Y., Tanaka, H., Arisawa, K., Kiuchi, Y., Miyashita, T., and Hagiwara, H. (2018). Dynamic localization of α-tubulin acetyltransferase ATAT1 through the cell cycle in human fibroblastic KD cells. Med. Mol. Morphol. 51, 217-226. https://doi.org/10.1007/s00795-018-0195-x
- O'Shea, E.K., Rutkowski, R., and Kim, P.S. (1992). Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell 68, 699-708. https://doi.org/10.1016/0092-8674(92)90145-3
- Oh, S., You, E., Ko, P., Jeong, J., Keum, S., and Rhee, S. (2017). Genetic disruption of tubulin acetyltransferase, alpha TAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/beta-catenin signaling. Biochem. Biophys. Res. Commun. 482, 8-14. https://doi.org/10.1016/j.bbrc.2016.11.039
- Ohtsubo, M., Theodoras, A.M., Schumacher, J., Roberts, J.M., and Pagano, M. (1995). Human cyclin E, a nuclear protein essential for the G(1)-to-S phase transition. Mol. Cell. Biol. 15, 2612-2624. https://doi.org/10.1128/MCB.15.5.2612
- Pardoll, D.M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252-264. https://doi.org/10.1038/nrc3239
- Price, M.A., Cruzalegui, F.H., and Treisman, R. (1996). The p38 and ERK MAP kinase pathways cooperate to activate Ternary Complex Factors and c-fos transcription in response to UV light. EMBO J. 15, 6552-6563. https://doi.org/10.1002/j.1460-2075.1996.tb01046.x
- Rasamizafy, S.F., Delsert, C., Rabeharivelo, G., Cau, J., Morin, N., and van Dijk, J. (2021). Mitotic acetylation of microtubules promotes centrosomal PLK1 recruitment and is required to maintain bipolar spindle homeostasis. Cells 10, 1859.
- Rashid, M.U., Muhammad, N., Bajwa, S., Faisal, S., Tahseen, M., Bermejo, J.L., Amin, A., Loya, A., and Hamann, U. (2016). High prevalence and predominance of BRCA1 germline mutations in Pakistani triple-negative breast cancer patients. BMC Cancer 16, 673.
- Shaulian, E. and Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131-E136. https://doi.org/10.1038/ncb0502-e131
- Soppina, V., Herbstman, J.F., Skiniotis, G., and Verhey, K.J. (2012). Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS One 7, e48204.
- Thomas, E., Gopalakrishnan, V., Hegde, M., Kumar, S., Karki, S.S., Raghavan, S.C., and Choudhary, B. (2016). A novel resveratrol based tubulin inhibitor induces mitotic arrest and activates apoptosis in cancer cells. Sci. Rep. 6, 34653.
- Tricker, E., Arvand, A., Kwan, R., Chen, G.Y., Gallagher, E., and Cheng, G. (2011). Apoptosis induced by cytoskeletal disruption requires distinct domains of MEKK1. PLoS One 6, e17310.
- van Dam, H. and Castellazzi, M. (2001). Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis. Oncogene 20, 2453-2464. https://doi.org/10.1038/sj.onc.1204239
- van Dam, H., Duyndam, M., Rottier, R., Bosch, A., de Vries-Smits, L., Herrlich, P., Zantema, A., Angel, P., and van der Eb, A.J. (1993). Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J. 12, 479-487. https://doi.org/10.1002/j.1460-2075.1993.tb05680.x
- Viale, P.H. (2020). The American Cancer Society's Facts & Figures: 2020 edition. J. Adv. Pract. Oncol. 11, 135-136.
- Wahba, H.A. and El-Hadaad, H.A. (2015). Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med. 12, 106-116.
- Wang, Q.M., Lv, L., Tang, Y., Zhang, L., and Wang, L.F. (2019). MMP-1 is overexpressed in triple-negative breast cancer tissues and the knockdown of MMP-1 expression inhibits tumor cell malignant behaviors in vitro. Oncol. Lett. 17, 1732-1740.
- Wang, T.H., Wang, H.S., Ichijo, H., Giannakakou, P., Foster, J.S., Fojo, T., and Wimalasena, J. (1998). Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J. Biol. Chem. 273, 4928-4936. https://doi.org/10.1074/jbc.273.9.4928
- Weston, C.R. and Davis, R.J. (2007). The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142-149. https://doi.org/10.1016/j.ceb.2007.02.001