DOI QR코드

DOI QR Code

Inhibition of Melanosome Transport by Inducing Exon Skipping in Melanophilin

  • Jin Young Kim (Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Seon-Young Han (OliPass Cosmeceuticals Company) ;
  • Kiho Sung (OliPass Cosmeceuticals Company) ;
  • Jeong Yeon Seo (OliPass Cosmeceuticals Company) ;
  • Cheol Hwan Myung (Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Chan Song Jo (Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Jee Hoe Yoon (Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Ji Yun Park (Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Jae Sung Hwang (Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University)
  • 투고 : 2022.12.19
  • 심사 : 2023.03.02
  • 발행 : 2023.07.01

초록

Exon skipping is an efficient technique to inhibit specific gene expression induced by a short-sequence peptide nucleic acid (PNA). To date, there has been no study on the effects of PNA on skin pigmentation. In melanocytes, the tripartite complex is responsible for the transport of mature melanosomes from the nucleus to the dendrites. The tripartite complex is composed of Rab27a, Mlph (Melanophilin), and Myosin Va. Defects in the protein Mlph, a melanosome transport-related protein, are known to cause hypopigmentation. Our study shows that Olipass peptide nucleic acid (OPNA), a cell membrane-permeable PNA, targets exon skipping in the Mlph SHD domain, which is involved in Rab27a binding. Our findings demonstrate that OPNA induced exon skipping in melan-a cells, resulting in shortened Mlph mRNA, reduced Mlph protein levels, and melanosome aggregation, as observed by microscopy. Therefore, OPNA inhibits the expression of Mlph by inducing exon skipping within the gene. These results suggest that OPNA, which targets Mlph, may be a potential new whitening agent to inhibit melanosome movement.

키워드

과제정보

This work was supported by the Technology development Program (S2680942) funded by the Ministry of SMEs and Startups (MSS, Korea).

참고문헌

  1. Bahadoran, P., Busca, R., Chiaverini, C., Westbroek, W., Lambert, J., Bille, K., Valony, G., Fukuda, M., Naeyaert, J. M., Ortonne, J. P. and Ballotti, R. (2003) Characterization of the molecular defects in Rab27a, caused by RAB27A missense mutations found in patients with Griscelli syndrome. J. Biol. Chem. 278, 11386-11392. https://doi.org/10.1074/jbc.M211996200
  2. Belotserkovskii, B. P., Liu, R. and Hanawalt, P. C. (2009) Peptide nucleic acid (PNA) binding and its effect on in vitro transcription in Friedreich's ataxia triplet repeats. Mol. Cacinog. 48, 299-308. https://doi.org/10.1002/mc.20486
  3. Bennett, C. F. and Swayze, E. E. (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Anna. Rev. Pharmacol. Toxicol. 50, 259-293. https://doi.org/10.1146/annurev.pharmtox.010909.105654
  4. Boffa, L. C., Morris, P. L., Carpaneto, E. M., Louissaint, M. and Allfrey, V. G. (1996) Invasion of the CAG triplet repeats by a complementary peptide nucleic acid inhibits transcription of the androgen receptor and TATA-binding protein genes and correlates with refolding of an active nucleosome containing a unique AR gene sequence. J. Biol. Chem. 271, 13228-13233. https://doi.org/10.1074/jbc.271.22.13228
  5. Cutrona, G., Carpaneto, E. M., Ulivi, M., Roncella, S., Landt, O., Ferrarini, M. and Boffa, L. C. (2000) Effects in live cells of a c-myc antigene PNA linked to a nuclear localization signal. Nat. Biotechnol. 18, 300-303. https://doi.org/10.1038/73745
  6. Desnos, C., Huet, S. and Darchen, F. (2007) 'Should I stay or should i go?': myosin V function in organelle trafficking. Biol. Cell 99, 411-423. https://doi.org/10.1042/BC20070021
  7. D'Souza, A. D., Belotserkovskii, B. P. and Hanawalt, P. C. (2018) A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 158-166. https://doi.org/10.1016/j.bbagrm.2017.12.008
  8. Evans, R. D., Robinson, C., Briggs, D. A., Tooth, D. J., Ramalho, J. S., Cantero, M., Montoliu, L., Patel, S., Sviderskaya, E. V. and Hume, A. N. (2014) Myosin-Va and dynamic actin oppose microtubules to drive long-range organelle transport. Curr. Biol. 24, 1743-1750. https://doi.org/10.1016/j.cub.2014.06.019
  9. Fukuda, M., Kuroda, T. S. and Mikoshiba, K. (2002) Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: implications of a tripartite protein complex for melanosome transport. J. Biol. Chem. 277, 12432-12436. https://doi.org/10.1074/jbc.C200005200
  10. Fukuda, M. (2002) Synaptotagmin-like protein (Slp) homology domain 1 of Slac-2a/melanophilin is a critical determinant of GTP-dependent specific binding to Rab27A. J. Biol. Chem. 277, 40118-40124. https://doi.org/10.1074/jbc.M205765200
  11. Granger, E., McNee, G., Allan, V. and Woodman, P. (2014) The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin. Cell Dev. Biol. 31, 20-29. https://doi.org/10.1016/j.semcdb.2014.04.011
  12. Gouveia, S. M. and Akhmanova, A. (2010) Cell and molecular biology of microtubule plus end tracking proteins: end binding proteins and their partners. Int. Rev. Cell Mol. Biol. 285, 1-74. https://doi.org/10.1016/B978-0-12-381047-2.00001-3
  13. Hanvey, J. C., Peffer, N. J., Bisi, J. E., Thomson, S. A., Cadilla, R., Josey, J. A., Ricca, D. J., Hassman, C. F., Bonham, M. A. and Au, K. G. (1992) Antisense and antigene properties of peptide nucleic acids. Science 258, 1481-1485. https://doi.org/10.1126/science.1279811
  14. Havens, M. A., Duelli, D. M. and Hastings, M. L. (2013) Targeting RNA splicing for disease therapy. Wiley Interdiscip. Rev. RNA 4, 247-266. https://doi.org/10.1002/wrna.1158
  15. Hume, A. N., Tarafder, A. K., Ramalho, J. S., Sviderskaya, E. V. and Seabra, M. C. (2006) A coiled-coil domain of melanophilin is essential for myosin va recruitment and melanosome transport in melanocytes. Mol. Biol. Cell 17, 4720-4735. https://doi.org/10.1091/mbc.e06-05-0457
  16. Ishida, M., Aria, S. P., Ohbayashi, N. and Fukuda, M. (2014) The GTPase-deficient Rab27A(Q78L) mutant inhibits melanosome transport in melanocytes through trapping of Rab27A effector protein Slac2-a/melanophilin in their cytosol. J. Biol. Chem. 294, 11059-11067.
  17. Katsuyama, Y., Taira, N., Yoshioka, M., Okano, Y. and Masaki, H. (2017) Disruption of melanosome transport in melanocytes treated with theophylline causes their degradation by autuphagy. Biochem. Biophys. Res. Commun. 485, 126-130. https://doi.org/10.1016/j.bbrc.2017.02.033
  18. Kundsen, H. and Nielsen, P. E. (1996) Antisense properties of duplex-and triplex-forming PNAs. Nucleic Acids Res. 24, 494-500. https://doi.org/10.1093/nar/24.3.494
  19. Lehner, S., Gahle, M., Dierks, C., Stelter, R., Gerber, J., Brehm, R. and Distl, O. (2013) Two-exon skipping within MLPH is associated with coat color dilution in rabbits. PLoS One 8, e84525.
  20. Lim, K. H., Han, Z., Jeon, H. Y., Kach, J., Jing, E., Vanhentenryck, S. W., Downs, M., Corrionero, A., Oh, R., Scharner, J., Venkatesh, A., Ji, S., Liau, G., Ticho, B., Nash, H. and Aznarez, I. (2020) Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat. Commun. 11, 3501.
  21. Matesic, L. E., Yip, R., Reuss, A. E., Swing, D. A., O'Sullivan, T. N., Fletcher, C. F., Copeland, N. G. and Jenkins, N. A. (2001) Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc. Natl. Acad. Sci. U. S. A. 98, 10238-10243. https://doi.org/10.1073/pnas.181336698
  22. Menasche, G., Ho, C. H., Sanal, O., Feldmann, J., Tezcan, I., Ersoy, F., Houdusse, A., Fischer, A. and Basile, G. D. S. (2003) Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J. Clin. Invest. 112, 450-456. https://doi.org/10.1172/JCI200318264
  23. Menasche, G., Pastural, E., Feldmann, J., Certain, S., Ersoy, F., Dupuis, S., Wulffraat, N., Bianchi, D., Fischer, A., Deist, F. L. and Basile, G. D. S. (2000) Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173-176. https://doi.org/10.1038/76024
  24. Mishra, K., Singla, S., Sharma, S., Saxena, R. and Batra, V. V. (2014) Griscelli syndrome type 2: a novel mutation in RAB27A gene with different clinical features in 2 siblings: a diagnostic conundrum. Korean J. Pediatr. 57, 91-95. https://doi.org/10.3345/kjp.2014.57.2.91
  25. Myung, C. H., Kim, K., Park, J. I., Lee, J. E., Lee, J. A., Hong, S. C., Lim, K. M. and Hwang, J. S. (2020) 16-Kauren-2-beta-18,19-triol inhibits melanosome transport in melanocytes by down-regulation of melanophilin expression. J. Dermatol. Sci. 97, 101-108. https://doi.org/10.1016/j.jdermsci.2019.12.009
  26. Nielsen, E. (2006) RNA targeting using peptide nucleic acid. Handb. Exp. Pharmacol. 173, 395-403. https://doi.org/10.1007/3-540-27262-3_20
  27. Nielsen, P. (2007) Modulating gene function with peptide nucleic acids (PNA). In Antisense Drug Technology, Chapter 18, pp. 507-518.
  28. Nielsen, P. E., Egholm, M. and Buchardt, O. (1994) Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene 149, 139-145. https://doi.org/10.1016/0378-1119(94)90422-7
  29. Ohbayashi, N. and Fukuda, M. (2012) Role of Rab family GTPases and their effectors in melanosomal logistics. J. Biochem. 151, 343-351. https://doi.org/10.1093/jb/mvs009
  30. Park, J. I., Lee, H. Y., Lee, J. E., Myung, C. H. and Hwang, J. S. (2016) Inhibitory effect of 2-methyl-naphto[1,2,3-de]quinolin-8-one on melanosome transport and skin pigmentation. Sci. Rep. 6, 29189.
  31. Passeron, T., Bahadoran, P., Bertolotto, C., Chiaverini, C., Busca, R., Valony, G., Bille, K., Ortonne, J. P. and Ballotti, R. (2004) Cyclic AMP promotes a peripheral distribution of melanosomes and stimulates melanophilin/Slac-2a actin association. FASEB J. 18, 989-991. https://doi.org/10.1096/fj.03-1240fje
  32. Pellestor, F. and Paulasova, P. (2004) The peptide nucleic acids (PNAs): a new generation of probes for genetic and cytogenetic analyses. Eur. J. Hum. Genet. 47, 694-700. https://doi.org/10.1038/sj.ejhg.5201226
  33. Raposo, G. and Marks, M. S. (2007) Melanosomes - dark organelles enlighten endosomal membrane transport. Nat. Rev. Mol. Cell Biol. 8, 786-797. https://doi.org/10.1038/nrm2258
  34. Rogers, S. L. and Gelfand, V. I. (2000) Membrane trafficking, organelle transport, and the cytoskeleton. Curr. Opin. Cell Biol. 12, 57-62 https://doi.org/10.1016/S0955-0674(99)00057-5
  35. Scharner, J., Ma, W. K., Zhang, Q., Lin, K. T., Rigo, F., Bennett, C. F. and Krainer, A. R. (2020) Hybridization-mediated off-target effects of splice-switching antisense oligonucelotides. Nucleic Acids Res. 48, 802-816. https://doi.org/10.1093/nar/gkz1132
  36. Shah, B. J., Jagati, A. K., Katrodiya, N. K. and Patel, S. M. (2016) Griscelli syndrome type-3. Indian Dermatol. Online J. 27, 506-508
  37. Sitaram, A. and Marks, M. S. (2012) Mechanisms of protein delivery to melanosomes in pigment cells. Physiology (Bethesda) 27, 85-99. https://doi.org/10.1152/physiol.00043.2011
  38. Tarafder, A. K., Wasmeier, C., Figueiredo, A. C., Booth, A. E. G., Orihara, A., Ramalho, J. S., Hume, A. N. and Seabra, M. C. (2011) Rab27a targeting to melanosomes requires nucleotide exchange but not effector binding. Traffic 12, 1056-1066. https://doi.org/10.1111/j.1600-0854.2011.01216.x
  39. Vickers, T. A., Griffith, M. C., Ramasamy, K., Risen, L. M. and Freier, S. M. (1995) Inhibition of NF-kappa B specific transcriptional activation by PNA strand invasion. Nucleic Acids Res. 23, 3003-3008. https://doi.org/10.1093/nar/23.15.3003
  40. Wasmeier, C., Hume, A. P., Bolasco, G. and Seabra, M. C. (2008) Melanosomes at a glance. J. Cell Sci. 121, 3995-3999. https://doi.org/10.1242/jcs.040667
  41. Westbroek, W., Klar, A., Cullinane, A. R., Ziegler, S. G., Hurvitz, H., Ganem, A., Wilson, K., Dorward, H., Huizing, M., Tamimi, H., Vainshtein, I., Berkun, Y., Lavie, M., Gahl, W. A. and Anikster, Y. (2012) Cellular and clinical report of new Griscelli syndrome type III cases. Pigment Cell Melanoma Res. 25, 47-56. https://doi.org/10.1111/j.1755-148X.2011.00901.x
  42. Westbroek, W., Tuchman, M., Tinloy, B., Wever, O. D., Vilboux, T., Hertz, J. M., Hasle, H., Heilmann, C., Wooley, A. H., Kleta, R. and Gahl, W. A. (2008) A novel missense mutation (G43S) in the switch I region of Rab27A causing Griscelli syndrome. Mol. Genet. Metab. 94, 248-254. https://doi.org/10.1016/j.ymgme.2008.02.009
  43. Yamaguchi, Y. and Hearing, V. J. (2009) Physiological factors that regulate skin pigmentation. Biofactors 35, 193-199. https://doi.org/10.1002/biof.29