DOI QR코드

DOI QR Code

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Received : 2023.03.12
  • Accepted : 2023.06.03
  • Published : 2023.06.25

Abstract

The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.

Keywords

References

  1. ABAQUS (2016), ABAQUS/Standard User's Manual; Hibbitt Karlsson and So-rensen Inc.; Rising Sun Mills, RI, USA.
  2. Allel, M., Mohamed, A. and Ahmed, B. (2013), "Stability condition for the evaluation of damage in three-point bending of a laminated composite", Steel Compos. Struct., 15(2), 203-220. http://dx.doi.org/10.12989/scs.2013.15.2.203.
  3. Betts, D., Sadeghian, P. and Fam, A. (2021), "Experimental and analytical investigations of the flexural behavior of hollow ±55° filament wound GFRP tubes", Thin-Wall. Struct., 159, 107246. https://doi.org/10.1016/j.tws.2020.107246.
  4. Betts, D., Sadeghian, P. and Fam, A. (2019), "Investigation of the stress-strain constitutive behavior of ±55° filament wound GFRP pipes in compression and tension", Compos. Part B, 172, 243-252. https://doi.org/10.1016/j.compositesb.2019.05.077.
  5. Bidhendi, A., Li, H. and Geitmann, A. (2020), "Modeling the nonlinear elastic behavior of plant epidermis. NRC Research Press", Botany, 98, 49-64. http://doi.org/10.1139/cjb-2019-0058.
  6. Chang, Y., Wen, W., Xu, Y., Cui, H. and Xu, Y. (2022), "Quasi-static mechanical behavior of filament wound composite thin-walled tubes: tension, torsion, and multi-axial loading", Thin-Wall. Struc., 177, 109361. https://doi.org/10.1016/j.tws.2022.109361.
  7. Chaouch, M., Merzoug, B. and Bezaz, A. (2012), "The flexural behavior study of composites material in static three-point bending test", Adv. Mater. Res., 463-4, 175-180. https://doi:10.4028/www.scientific.net/AMR.463-464.175.
  8. Chen, L., Pan, D., Zhao, Q., Chen, L., Chen, L. and Xu, W. (2021), "Analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipes based on three-dimensional stress state", Struct. Eng. Mech., 77(1), 137-149. https://doi.org/10.12989/sem.2021.77.1.137.
  9. Dexin, X., Tongyun, W. and Richard, Y.J.L. (2015), "Experimental investigation on the behavior of hollow GFRP pipes subjected to transverse impact", Adv. Mater. Res., 1110, 36-39. https://doi:10.4028/www.scientific.net/AMR.1110.36.
  10. Dong, Ch. (2021), "Flexural behaviour of carbon and glass reinforced hybrid composite pipes", Compos., 4, 100090. https://doi.org/10.1016/j.jcomc.2020.100090.
  11. Gemi, L., Morkavuk, S. and Koklu, U. (2019), "An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation", Compos. Part B, 172(1), 186-194. https://doi.org/10.1016/j.compositesb.2019.05.023.
  12. Gerrard, D.P., Srivatsan, T.S., Scavuzzo, R.J., Miner, T.S. and Olabisi, O. (2007), "An understanding of bending and pressure fatigue of composite pipes", ASME Pressure Vessels and Piping Division Conference, Texas, USA, July. https://doi.org/10.1115/PVP2007-26824.
  13. Geuchy Ahmad, A. and Hoa, S.V. (2016), "Flexural stiffness of thick walled composite tubes", Compos. Struct., 149, 125-133. http://dx.doi.org/10.1016/j.compstruct.2016.03.050.
  14. Ghalghachi, R.A., Showkati, H. and Firouzsalari, S.E. (2021), "Buckling behaviour of GFRP cylindrical shells subject to axial compression load", Compos. Struct., 260, 113269. https://doi.org/10.1016/j.compstruct.2020.113269.
  15. Guo, Zh., Han, X., Guo, M. and Han, Zh. (2015), "Buckling analysis of filament wound composite cylindrical shell for considering the filament undulation and crossover", Struct. Eng. Mech., 55(2), 399-411. http://dx.doi.org/10.12989/sem.2015.55.2.399.
  16. Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J.Appl. Mech., 49, 329-334. https://doi.org/10.1115/1.3153664.
  17. Kara, M., Kirici, M. and Cagan, C.S. (2019), "Effects of the number of fatigue cycles on the hoop tensile strength of glass fiber/epoxy composite pipes", J. Failure Anal. Prevention, 19, 1181-1186. https://doi.org/10.1007/s11668-019-00720-z.
  18. Krishnan, P., Abdul Majid, M.S., Afendi, M., Gibson, A.G. and Marzuki, H.F.A. (2015), "Effects of winding angle on the behaviour of glass/epoxy pipes under multiaxial cyclic loading", Mater. Des., 88, 196-206. http://dx.doi.org/10.1016/j.matdes.2015.08.153.
  19. Kumar Rajak, D., Wagh, P.H. and Linul, E. (2021), "Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: a review", Polymers, 13(21), 3721. https://doi.org/10.3390/polym13213721.
  20. Lupachev, D. and Hu, Y. (2020), "Finite elements modeling of randomly oriented short fiber-reinforced composite materials", International Conference on Aerospace System Science and Engineering, Shanghai, July. https://doi.org/10.1007/978-981-33-6060-0_31.
  21. Marco Ayala, C., Marco, C.J. and Salete, E. (2016), "New formulas for calculating mode II fracture energy of several typologies of GRP pipes under impact", Compos., 92, 242-251. http://dx.doi.org/10.1016/j.compositesb.2016.02.041.
  22. Mortazavian, S. and Fatemi, A. (2015), "Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review", Int. J. Fatigue, 70, 297-321. https://doi.org/10.1016/j.ijfatigue.2014.10.005.
  23. Ozbek, O., Dogan, N.F. and Bozkurt, Y.O. (2020), "An experimental investigation on lateral crushing response of glass/carbon intraply hybrid filament wound composite pipes", J. Braz. Soc. Mech. Sci. Eng., 42, 389. https://doi.org/10.1007/s40430-020-02475-3.
  24. Rafiee, R., Fakoor, M. and Heamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel Compos. Struct., 19(6), 1369-1379. http://dx.doi.org/10.12989/scs.2015.19.6.1369.
  25. Rafiee, R. and Habibagahi, M.R. (2018), "Evaluating mechanical performance of GFRP pipes subjected to transverse loading", Thin-Wall. Struct., 131, 347-359. https://doi.org/10.1016/j.tws.2018.06.037.
  26. Rafiee, R. and Habibagahi, M.R. (2018), "On the stiffness prediction of gfrp pipes subjected to transverse loading", KSCE J. Civil Eng., 22, 4564-4572. https://doi.org/10.1007/s12205-018-2003-5.
  27. Rafiee, R. and Ghorbanhosseini, A. (2020), "Analyzing the long-term creep behavior of composite pipes: developing an alternative scenario of short-term multi-stage loading test", Compos. Struct., 254, 112868. https://doi.org/10.1016/j.compstruct.2020.112868.
  28. Rafiee, R. and Ghorbanhosseini, A. (2021), "Experimental and theoretical investigations of creep on a composite pipe under compressive transverse loading", Fibers Polymers, 22, 222-230. https://doi.org/10.1007/s12221-021-0265-x.
  29. Samanci, A., Tarakcioglu, N. and Akdemir, A. (2011), "Fatigue failure analysis of surface-cracked (±45°)3 filament-wound GRP pipes under internal pressure", J. Compos. Mater., 46(9), 1041-1050. http://jcm.sagepub.com/content/46/9/1041. 1041
  30. Samanci, A., Avci, A., Tarakcioglu, N. and Shahin, S.O. (2008), "Fatigue crack growth of filament wound GRP pipes with a surface crack under cyclic internal pressure", J. Mater. Sci., 43, 5569-5573. https://doi.org/10.1007/s10853-008-2820-x.
  31. Shadmehri, F., Derisi, B. and Hoa, S.V. (2011), "On bending stiffness of composite tubes", Compos. Struct., 93, 2173-2179. https://doi:10.1016/j.compstruct.2011.03.002.
  32. Shaik, F., Malkapuram, R., Chandra Shekar, K. and Dhaval Varma, P. (2022), "Evaluation of delamination in the drilling of CFRP composites", Adv. Mater. Res., 11(4), 375-390. https://doi.org/10.12989/amr.2022.11.4.375.
  33. Sharifi Teshnizi, Sh., Koloor, S.S.R, Sharifishourabi, G., Bin Ayob, A. and Yazid Yahya, M. (2012), "Mechanical behavior of GFRP laminated composite pipe subjected to uniform radial patch load", Adv. Mater. Res., 488-9, 542-546. 10.4028/www.scientific.net/AMR.488-489.542.
  34. Shiogama, Y., Kumagai, N., Ando, Y. and Kuribayashi, T. (2018), "Study on ultimate state of filament winding frp pipes under bending force", Pressure Vessels and Piping Conference, Prague, Czech Republic, July.
  35. Silva, N.S., Netto, T.A., Bastian, F.L. and Silva, R.A.F. (2020), "On the effect of the ply stacking sequence on the failure of composite pipes under external pressure", Mar. Struct., 70, 102-658. https://doi.org/10.1016/j.marstruc.2019.102658.
  36. Stefanovska, M., Risteska, S., Samakoski, B., Maneski, G. and Kostadinoska, B. (2015), "Theoretical and experimental bending properties of composite pipes", Int. J. Environ., Chem., Ecological, Geolog. Geophys. Eng., 9(6), 706-710. https://doi.org/10.5281/zenodo.1106909.
  37. Toh, W., Bin Tan, L., Ming Tse, K., Raju, k., lee, H. and Tan, V. (2018), "Numerical evaluation of buried composite and steel pipe structures under the effects of gravity", Steel Compos. Struct., 26(1), 55-66. https://doi.org/10.12989/scs.2018.26.1.055.
  38. Verma, A., Mandal, A. and Sreehari, D. (2020), "Damage and failure analysis of short carbon fiber reinforced epoxy composite pipe using FEA", Adv. Appl. Mech. Eng., 313-320, https://doi.org/10.1007/978-981-15-1201-8_36.
  39. Visweswaraiah, S.B., Selezneva, M., Lessard, L. and Hubert, P. (2018), "Mechanical characterisation and modelling of randomly oriented strand architecture and their hybrids - A general review", J. Reinforced Plastic Compos., 37(8), 548-580. https://doi.org/10.1177/0731684418754360.
  40. Wang, Sh., Yao, L. and Meng, X. (2018), "Bending mechanical behavior analysis of glass-fiber reinforced thermoplastic pipe based on a nonlinear solid element model", J. Mar. Sci. Technol., 26, 575-586. https://DOI: 10.6119/JMST.201808_26(4).0010.
  41. Wang, W., Sheikh, N.M. and Hadi, M.N.S. (2015), "Behaviour of perforated GFRP tubes under axial compression", Thin-Wall. Struct., 95, 88-100. http://dx.doi.org/10.1016/j.tws.2015.06.019.
  42. Xia, M., Takayanagi, H. and Kemmochi, K. (2002), "Bending behavior of filament-wound fiber-reinforced sandwich pipes", Compos. Struct., 56, 201-210. https://doi.org/10.1016/S0263-8223(01)00181-7.
  43. Xia, M., Takayangi, H. and Kemmochi, K. (2001), "Analysis of multi-layered filament-wound composite pipe under internal pressure", Compos. Struct., 53(4), 483-491. https://doi.org/10.1016/S0263-8223(01)00061-7.
  44. Yoon, H.S. and Oh, J.O. (2015), "Prediction of long-term performance for GRP pipes under sustained Internal pressure", Compos. Struct., 134, 185-189. http://dx.doi.org/10.1016/j.compstruct.2015.08.075.
  45. Zhang, C., Hoa, S.V. and Liu, P. (2014), "A method to analyze the pure bending of tubes of cylindrically anisotropic layers with arbitrary angles including 0° or 90°", Compos. Struct., 109, 57-67. http://dx.doi.org/10.1016/j.compstruct.2013.10.038.
  46. Rafiee, R. and Mazhari, B. (2016), "Evaluating long-term performance of glass fiber reinforced plastic pipes subjected to internal pressure", Construct. Build. Mater., 122, 694-701. http://dx.doi.org/10.1016/j.conbuildmat.2016.06.103.
  47. Rafiee, R. and Ghorbanhosseini, A. (2020), "Developing a micromacromechanical approach for evaluating long-term creep in composite cylinders", Thin-Wall. Struct., 151, 106714. https://doi.org/10.1016/j.tws.2020.106714.
  48. Rafiee, R. and Mazhari, B. (2016), "Simulation of the long-term hydrostatic tests on Glass Fiber Reinforced Plastic pipes", Compos. Struct., 136, 56-63. http://dx.doi.org/10.1016/j.compstruct.2015.09.058.
  49. Rafiee, R. and Abbasi, F. (2020), "Numerical and Experimental Analyses of the Hoop Tensile Strength of Filament-Wound Composite tubes", Mech. Compos. Mater., 56, 631-648, DOI 10.1007/s11029-020-09894-2.
  50. Duarte, A.P.C., Diaz Saez, A. and Silvestre, N. (2017), "Comparative study between XFEM and Hashin damage criterion applied to failure of composites", Thin-Wall. Struct., 115, 277-288. http://dx.doi.org/10.1016/j.tws.2017.02.020.
  51. Sebeay, T.A. and Ahmed, A. (2023), "Numerical investigation into GFRP composite pipes under hydrostatic internal pressure", Polymers, 15(5), 1110. https://doi.org/10.3390/polym15051110.
  52. Abdelouahed, E., Mokhtari, M. and Benzaama, H. (2019), "Finite element analysis of the thermo-mechanical behavior of composite pipe elbows under bending and pressure loading", Frattura Ed Integrita Strutturale-Fracture Struct. Integ., 13, 698-713. https://doi.org/10.3221/IGF-ESIS.49.63.