DOI QR코드

DOI QR Code

Characteristics and Controlling Factors on Nickel Laterite Deposits in Sulawesi, Indonesia

인도네시아 술라웨시 니켈 라테라이트 광상의 특성과 광화 규제 요인

  • Younggi Choi (Overseas Exploration Team, Korea Mine Rehabilitation and Mineral Resources Corporation) ;
  • Byounghan Kim (Overseas Exploration Team, Korea Mine Rehabilitation and Mineral Resources Corporation)
  • 최영기 (한국광해광업공단 해외조사팀) ;
  • 김병한 (한국광해광업공단 해외조사팀)
  • Received : 2023.03.08
  • Accepted : 2023.04.25
  • Published : 2023.06.28

Abstract

Sulawesi island, as a global producer of nickel resources, is leading the rapid growth of nickel industry of Indonesia. Nickel laterite deposits in Sulawesi was formed by lateritization of the world-scale East Sulawesi Ophiolite (ESO) under the active tectonic setting and tropical rainforest climate. In this paper, exploration cases for nickel laterite deposits in five regions of Sulawesi are reported. Regional characteristics on nickel laterite deposits in Sulawesi are understood based on various exploration activities such as outcrop, trench and pit survey, petrological observation, geochemical analysis, and interpretation of drilling data, etc.. In the northeastern part of 'Southeast-Arm', which is a strategic location for nickel industry of Indonesia, ESO is extensively exposed to the surface. In the Morombo and Morowali regions, typical high-grade saprolite-type orebodies with a thickness of 10 to 20 m occur. The cases showed that topographic relief tends to regulate Ni-grade distribution and orebody thickness, and that high grade intervals tend to occur in places where joints and garnierite veins are dense. In the Tinanggea and South Palangga regions in the southern part of the Southeast-Arm, overburden composed of Neogene to Quaternary deposits is a major factor affecting the preservation and profitability of nickel laterite deposits. Despite the overburden, high-grade saprolite-type orebodies composed of Ni-bearing serpentine with garnierite veins occur in a thickness of around 10 m to secure economic feasibility. In contrast, in the Ampana region in the northern part of 'East-Arm', low-grade nickel laterite deposits with immature laterite profile was identified, which is thought to be the result of active denudation due to tectonic uplift. Exploration cases in this paper will help to understand characteristics and controlling factors on nickel laterite deposits in Sulawesi, Indonesia.

인도네시아 술라웨시는 니켈 라테라이트 광상의 세계적인 산출지로 인도네시아 니켈산업의 급속한 성장을 견인하고 있다. 활성경계부 지구조환경과 열대우림기후 그리고, 세계적 규모의 동부 술라웨시 오피오라이트(ESO)로부터 니켈 라테라이트 광상이 형성되었다. 술라웨시에 부존하는 니켈 라테라이트 광상의 특성을 이해하는 일은 니켈자원 탐사에 있어 매우 중요하다. 이 논문에서는 술라웨시 5개 지역에서 수행된 니켈 라테라이트 광상 탐사사례들을 보고한다. 지표지질조사, 트렌치 및 채굴적 단면조사, 암석기재, 전암화학 분석 및 시추탐사자료 해석 등 다양한 탐사활동들을 토대로 술라웨시 니켈 라테라이트 광상에 대한 지역별 특성들을 보고한다. 인도네시아 니켈산업의 요충지인 '남동부-암'(Southeast-Arm) 북동부에 위치하는 모롬보와 모로왈리 지역에서는 오피오라이트가 광역적으로 분포하고, 전형적인 사프로라이트형 광상이 고품위로 부존한다. 지형기복이 니켈 품위와 광체 기하를 제어하며, 절리와 가니어라이트맥이 조밀한 곳에서 고품위로 산출되는 경향이 있다. 남동부-암 남부 티낭게아와 남팔랑가 지역에서는 신생대 퇴적층으로 구성되는 오버버든(overburden)이 니켈 라테라이트 광상 상위로 놓이므로 탐사 시에 파악해야 할 주요 인자이다. 오버버든에도 불구하고, 가니어라이트맥과 함께 함니켈-사문석류로 구성되는 고품위 사프로라이트형 광체가 10 m 내외 두께로 발달하여 경제성을 확보한다. 이와 달리, '동부-암(East-Arm)' 북부 암파나 지역은 니켈 라테라이트 광상이 저품위로 부존하며, 라테라이트 프로파일이 미성숙하다. 이는 지구조 융기에 따른 삭박률이 니켈 라테라이트 광상의 형성 속도를 앞지른 결과로 생각된다. 이 논문에서 다루어진 탐사사례들은 니켈 라테라이트 광상의 부존특성과 광화 규제요인의 유기적인 상호작용을 보여준다.

Keywords

Acknowledgement

이 논문에서 다루어진 탐사사례들은 국고보조사업인 해외자원개발 조사사업에 의해 지원되었다. 논문의 질적향상을 위해 건설적인 비평을 해주신 심사위원들과 편집위원장께 감사를 드린다. X-선 회절분석과 현미경 관찰을 지원한 한국광해광업공단 기술연구원의 성미나 과장에게 고마운 마음을 전한다. 전암화학 분석에 유익한 조언을 해준 박종규 박사에게 고마운 마음을 전한다. 해외 오지의 어려운 여건속에서 현장조사에 많은 도움을 주신 지원사업 관계자 여러분께 감사를 드린다.

References

  1. Brand, N.W., Butt, C.R.M. and Elias, M. (1998) Nickel laterites: classifications and features. AGSO J. Australian Geol. Geophys., v17, p.81-88.
  2. Brindley, G.W. and Hang, P.T. (1973) The nature of garnierites-i structures, chemical compositions and color characteristics. Clays Clay Miner., v.21, p.27-40. https://doi.org/10.1346/CCMN.1973.0210106
  3. Butt, C.R.M. and Cluzel, D. (2013) Nickel Laterite Ore Deposits: Weathered Serpentinites. Elements, v.9(2), p.123-128. https://doi.org/10.2113/gselements.9.2.123
  4. Carvalho-E-Silva, M.L., Ramos, A.Y., Tolentino, H.C.N., Enzweiler, J., Netto, S.M. and Alves, M.C.M. (2003) Incorporation of Ni into natural goethite: an investigation by X-ray absorption spectroscopy. Am. Mineral., v.88, p.876-882. https://doi.org/10.2138/am-2003-5-617
  5. Cluzel, D. and Vigier, B. (2008) Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). evidence from Garnierite Veins and Faulted Regolith. Resource Geol., v.58, p.161-170. https://doi.org/10.1111/j.1751-3928.2008.00053.x
  6. Choi, Y., Lee, I. and Moon, I. (2021) Geochemical and Mineralogical Characteristics of Garnierite From the Morowali Ni-Laterite Deposit in Sulawesi, Indonesia. Front. Earth Sci., v.9, 761748. https://doi.org/10.3389/feart.2021.761748
  7. Delinam, R.E., Arcilla, C., Otake, T., Garcia, J.J., Tan, M. and Ito, A. (2020) Chromium occurrence in a nickel laterite profile and its implications to surrounding surface waters. Chemical Geology, v.558, 119863. https://doi.org/10.1016/j.chemgeo.2020.119863
  8. Elias, M., Donaldson, M.J. and Giorgetta, N. (1981) Geology, mineralogy, and chemistry of lateritic nickel-cobalt deposits near Kalgoorlie, Western Australia. Econ. Geol., v.76, p.1775-1783. https://doi.org/10.2113/gsecongeo.76.6.1775
  9. Fu, W., Yang, J., Yang, M., Pang, B., Liu, X. and Niu, H., et al. (2014) Mineralogical and Geochemical Characteristics of a Serpentinite-Derived Laterite Profile from East Sulawesi, Indonesia: Implications for the Lateritization Process and Ni Supergene Enrichment in the Tropical Rainforest. J. Asian Earth Sci., v.93, p.74-88. http://doi:10.1016/j.jseaes.2014.06.030
  10. Fu, W., Yang, J., Pang, C. and Zeng, X., et al. (2018) Garnierite mineralization from a serpentinite-derived lateritic regolith, Sulawesi Island, Indonesia: Mineralogy, geochemistry and link to hydrologic flow regime. Journal of Geochemical Exploration, v.188, p.240-256. https://doi.org/10.1016/j.gexplo.2018.01.022
  11. Gali, S., Soler, J.M., Proenza, J.A., Lewis, J.F., Cama, J. and Tauler, E. (2012) Ni enrichment and stability of Al-free garnierite solidsolutions: a thermodynamic approach. Clays Clay Miner., v.60, p.121-135. https://doi.org/10.1346/CCMN.2012.0600203
  12. Golightly, J.P. (1981) Nickeliferous laterite deposits. In: Economic Geology, 75th Anniversary Volume, pp. 710-735. https://doi.org/10.5382/AV75.18
  13. Golightly, J.P. (2010) Progress in understanding the evolution of nickel laterites. In: Goldfarb, R.J., Marsh, E.E., Monecke, T. (Eds.), The Challenge of Finding new Mineral Resources-Global Metallogeny, Innovative Exploration, and New Discoveries, vol. 15. Society of Economic Geologists Special Publication, pp. 451-485. https://doi.org/10.5382/SP.15.2.07
  14. Hall, R. (2012) Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, v.570-571, p.1-41. https://doi.org/10.1016/j.tecto.2012.04.021
  15. Hall, R. and Wilson, M.E.J. (2000) Neogene sutures in eastern Indonesia. Journal of Asian Earth Sciences, v.18, p.781-808. https://doi.org/10.1016/S1367-9120(00)00040-7
  16. Kadarusman, A., Miyashita, S., Maruyama, S., Parkinson, C. D., and Ishikawa, A. (2004) Petrology, Geochemistry and Paleogeographic Reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics, v.392, p.55-83. https://doi:10.1016/j.tecto.2004.04.008
  17. Katili, J.A. (1978) Past and present Geotectonic position of Sulawesi, Indonesia. Tectonophysics, v.45, p.289-322. https://doi.org/10.1016/0040-1951(78)90166-X
  18. Konopka, G., Szamalek, K. and Zglinicki, K. (2022) Ni-Co Bearing Laterites from Halmahera Island (Indonesia). Appl. Sci., v.12, 7586. https://doi.org/10.3390/app12157586
  19. Lambiv, D.G., Gleeson, S.A. and Schofield, P.F. (2013) Mineralogical characterization of the Nkamouna Co-Mn laterite ore, southeast Cameroon. Miner. Deposita, v.48, p.155-171. https://doi.org/10.1007/s00126-012-0426-3
  20. Leeuwen, T.M. and Pieters, P. (2012) Mineral deposits of Sulawesi. Proceedings of the Sulawesi mineral resources 2011 seminar MGEI-IAGI. 28-29 November 2011, Manado, North Sulawesi, Indonesia.
  21. Llorca, S. and Monchoux, P. (1991) Supergene cobalt minerals from New Caledonia. Can. Mineral., v.29, p.149-161.
  22. Marsh, E., Anderson, E. and Gray, F. (2013). "Nickel-Cobalt Laterites-A Deposit Model," in Mineral Deposit Models for Resource Assessment. Reston: USGS, 49. https://doi.org/10.3133/sir20105070H
  23. Maurizot, P., Sevin, B., Iseppi, M. and Giband, T. (2019) Nickel-Bearing Laterite Deposits in Accretionary Context and the Case of New Caledonia: From the Large-Scale Structure of Earth to Our Everyday Appliances. GSA Today, v.29, p.4-10. https://doi.org/10.1130/GSATG364A.1
  24. Monnier, C., Girardeau, J., Maury, R.C. and Cotten, J. (1995) Back arc basin origin for the East Sulawesi Ophiolite, Eastern Indonesia. Geology, v.23, p.851-854. https://doi.org/10.1130/0091-7613(1995)023%3C0851:BABOFT%3E2.3.CO;2
  25. Mudd, G.M. and Jowitt, S.M. (2014) A Detailed Assessment of Global Nickel Resource Trends and Endowments. Econ. Geology, v.109(7), p.1813-1841. http://doi:10.2113/econgeo.109.7.1813
  26. Parkinson, C. (1998) Emplacement of the East Sulawesi Ophiolite: Evidence from Subophiolite Metamorphic Rocks. J. Asian Earth Sci., v.16(1), p.13-28. http://doi:10.1016/s0743-9547(97)00039-1
  27. Rusmana, E., Sukido, Sukarna, D., Haryono, E. and Simandjuntak, T.O. (1993a) Geological Map of the Lasusua-Kendari Quadrangles, Sulawesi. Geological Research and Development Center (1:250,000).
  28. Rusmana, E., Koswara. A. and Simandjuntak, T.O. (1993b) Geological Map of the Luwuk sheet, Sulawesi. Geological Research and Development Center (1:250,000).
  29. Simandjuntak, T.O., Surono, and Sukido (1993a) Geological Map of the Kolaka sheet, Sulawesi. Geological Research and Development Center (1:250,000).
  30. Simandjuntak, T.O., Rusmana. E., Supandjono, J.B. and Koswara, A. (1993b) Geological Map of the Bungku Quadrangle, Sulawesi. Geological Research and Development Center (1:250,000).
  31. Satyana, A.H. and Purwaningsih, M.E.M. (2011) Collision of Micro-continents with Eastern Sulawesi: Records from Uplifted Reef Terraces and Proven-Potential Petroleum Plays. Proceedings of the Indonesian Petroleum Association. Thirty-fifth annual convention and exhibition, May 2011.
  32. USGS (2019) Mineral Commodity Summaries 2019, Washington, DC, USA. https://doi.org/10.3133/70202434
  33. Watkinson, I.M., Hall, R. and Ferdian, F. (2011) Tectonic reinterpretation of the Banggai-Sula-Molucca Sea margin, Indonesia. Geological Society, London, Special Publications, v.355, p.203-224. https://doi.org/10.1144/SP355.10
  34. Wells, M.A., Ramanaidou, E.R., Verrall, M. and Tessarolo, C. (2009) Mineralogy and crystal chemistry of "garnierites" in the Goro lateritic nickel deposit, New Caledonia. Eur. J. Mineral., v.21, p.467-483. https://doi.org/10.1127/0935-1221/2009/0021-1910