DOI QR코드

DOI QR Code

Geochemistry and Petrogenesis of Pan-african Granitoids in Kaiama, North Central, Nigeria

  • Aliyu Ohiani Umaru (Pan African University of Life and Earth Science Institute including (Health and Agriculture), University of Ibadan) ;
  • Olugbenga Okunlola (Department of Geology, University of Ibadan) ;
  • Umaru Adamu Danbatta (Department of Geology, Ahmadu Bello University) ;
  • Olusegun G. Olisa (Department of Earth Sciences, Olabisi Onabanjo University)
  • Received : 2023.03.30
  • Accepted : 2023.05.16
  • Published : 2023.06.28

Abstract

Pan African granitoids of Kaiama is comprised of K-feldspar rich granites, porphyritic granites, and granitic gneiss that are intruded by quartz veins and aplitic veins and dykes which trend NE-SW. In order to establish the geochemical signatures, petrogenesis, and tectonic settings of the lithological units, petrological, petrographical, and geochemical studies was carried out. Petrographic analysis reveals that the granitoids are dominantly composed of quartz, plagioclase feldspar, biotite, and k-feldspar with occasional muscovites, sericite, and opaque minerals that constitute very low proportion. Major, trace, and rare earth elements geochemical data reveal that the rocks have moderate to high silica (SiO2=63-79.7%) and alumina (Al2O3=11.85-16.15) contents that correlate with the abundance of quartz, feldspars, and biotite. The rocks are calc-alkaline, peraluminous (ASI=1.0-<1.2), and S-type granitoids sourced by melting of pre-existing metasedimentary or sedimentary rocks containing Al, Na, and K oxides. They plot dominantly in the WPG and VAG fields suggesting emplacement in a post-collisional tectonic setting. On a multi-element variation diagram, the granitoids show depletion in Ba, K, P, Rb, and Ti while enrichment was observed for Th, U, Nd, Pb and Sm. Their rare-earth elements pattern is characterized by moderate fractionation ((La/Yb)N=0.52-38.24) and pronounced negative Eu-anomaly (Eu/Eu*=0.02-1.22) that points to the preservation of plagioclase from the source magma. Generally, the geochemical features of the granitoids show that they were derived by the partial melting of crustal rocks with some input from greywacke and pelitic materials in a typical post-collisional tectonic setting.

Keywords

Acknowledgement

This publication is part of the Ph.D. thesis of the first author, funded by the African Union through the Pan African University Institute of life and Earth Sciences (including health and agriculture), PAULESI.

References

  1. Ajibade, A.C. (1976) Provisional classification and correlation of the schist belts of northwestern Nigeria. In: Kogbe (ed) Geology of Nigeria, Elizabeth publishing Co. p.85-90. 
  2. Abaa, S.I. (1983) The structure and petrography of alkaline rocks of the Mada Younger Granite Complex Nigeria. Journal of African Earth Science, v.3, p.107-113. doi: 10.1016/0899-5362(85)90029-6 
  3. Altherr, R., Holl, A., Hegner, E., Langer, C. and Kreuzer, H. (2000) High potassium calc-alkaline I-type plutonism in the European Variscides, northern Vosges (France) and northern Schwarzald (Germany). Lithos, v.50, p.51-73. doi: 10.1016/S0024-4937(99)00052-3 
  4. Adetunji, A. and Ocan, O.O. (2010) Characterization and mineralization potentials of granitic pegmatites of Komu area, Southwestern Nigeria. Resource Geology, v. 60, p.87-97. doi: 10.1111/j.1751-3928.2010.00116.x 
  5. Akoh, J.U., Ogunleye, P.O. and Aliyu, A.I. (2015) Geochemical evolution of micas and Sn-, Nb-, Ta- mineralization associated with the rare metal pegmatite in Angwan Doka, central Nigeria. Journal of African Earth Sciences, v.97, p.167-174.  https://doi.org/10.1016/j.jafrearsci.2015.08.017
  6. Adetunji, A., Olarewaju, V.O., Ocan, O.O., Ganev, V.Y. and Macheva, L. (2016) Geochemistry and U-Pb zircon geochronology of the pegmatites in Ede area, southwestern Nigeria: A newly discovered oldest Pan African rock in southwestern Nigeria. Journal of African Earth Sciences, v.115, p.177-190. doi: 10.1016/j.jafrearsci.2015.12.006 
  7. Bowden, P. (1970) Origin of the younger granites of northern Nigeria. Contributions to Mineralogy and Petrology, v.25, p.153-162. doi: 10.1007/BF00389784 
  8. Burke, K.C. and Dewey, J.F. (1972) Orogeny in Africa. In: Dessauvagie TFJ, Whiteman AJ (editors) Africa geology. 1st ed. University of Ibadan Press, Ibadan, p.583-608. 
  9. Black, R., Caby, R., Moussine, P.A., Bertrand, J.M., Fabre, J. and Lesquer, A. (1979) Evidence for the Late Precambrian plate tectonics in West Africa. Nature, v.278, p.223-227. doi: 10.1038/278223a0 
  10. Black, R. (1980) Precambrian of West Africa. Episodes, v.3, p.3-8. doi: 10.18814/epiiugs/1980/v3i4/001 
  11. Boynton, W.V. (1984) Geochemistry of rare earth elements: Meteorite studies. In: Henderson, P (ed), rare earth elements geochemistry, Elsevier, New York, p.63-114. 
  12. Black, R. and Liegeois, J.P. (1993) Cratons, mobile belts, alkaline rocks, and continental lithospheric mantle; the Pan-African testimony. Journal of the Geological Society of London, v.150, p.89-98. doi: 10.1144/gsjgs.150.1.0088 
  13. Bonin, B. (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, v.78, p.1-24. doi: 10.1016/j.lithos.2004.04.042 
  14. Blevin, P.L. (2014) Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: implications for gold-rich ore systems. Resource Geology, v.54(3), p241-252. doi: 10.1111/j.1751-3928.2004.tb00205.x 
  15. Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pac. J., v.8, p.173-174. 
  16. Castaing, C., Feybesse, J.L., Thieblemont, D., Triboulet, C. and Chevremont, P. (1994) Palaeogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks? Precambrian Research, v.69, p.327-344. doi: 10.1016/0301-9268(94)90095-7 
  17. Chappell, B.W. (1999) Aluminum saturation in I and S-type granites and the characterization of fractionated haplogranites. Lithos, v.46, p.535-551. doi: 10.1016/S0024-4937(98)00086-3 
  18. Clemens, J.D., Stevens, G. and Farina, F. (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos, v.126(3-4), p.174-181. doi: 10.1016/j.lithos.2011.07.004 
  19. Clemens, J.D. and Stevens, G. (2012) What controls chemical variation in granitic magmas? Lithos, v.134-135, p.317-329. doi: 10.1016/j.lithos.2012.01.001 
  20. Chappell, B.W., Bryant, C.J. and Wyborn, D. (2012) Peraluminous I-type granites. Lithos, v.153, p.142-153. doi: 10.1016/j.lithos.2012.07.008 
  21. Chukwu, A. and Obiora, S.C. (2021) Petrology and geochemistry of pegmatites and associated rocks in Wamba areas, northcentral basement complex, Nigeria: implications for petrogenesis and rare-metal mineralization. Arabian Journal of Geoscience, v.14, p.906. https://doi.org/10.1007/s12517-021-07284-z 
  22. Dada, S.S. (2006) Proterozoic evolution of Nigeria. In: Oshi O (ed). The basement complex of Nigeria and its mineral resources (A tribute to Prof Rahman, M.A.O), Akin Jinad and Company, Ibadan, p.29-44. 
  23. De Wit, M.J., Stankiewicz, J. and Reeves, C. (2008) Restoring Pan-African-Brasiliano connections: more Gondwana control, less trans-Atlantic corruption. In: Pankhurst, R.J., Trouw, R.A.J., Brito Neves, B.B., De Wit, M.J. (Eds.), Pre-Cenozoic Correlations Across the South Atlantic Region. The Geological Society, London, p.399-412. doi: 10.1144/SP294.20 
  24. Ekwueme, B.N. and Kroner, A. (1998) Single zircon evaporation ages from the Oban Massif, southeastern Nigeria. Journal of African Earth Sciences, v.26, p.195-205. http://dx.doi.org/10.1016/S0899-5362(98)00005-0 
  25. Ferre, E.C., Caby, R., Peucat, J.J., Capdevila, R. and Monie, P. (1998) Pan-African, post-collisional, ferro-potassic granite and quartz-monzonite plutons of Eastern Nigeria. Lithos, v.45, p.225-279. doi: 10.1016/S0024-4937(98)00035-8 
  26. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Elles, D.J. and Frost, C.D. (2001) A Geochemical Classification for Granitic Rocks. Journal of Petrology, v.42(11), p.2033-2048. DOI: 10.1093/petrology/42.11.2033 
  27. Ferre, E.C., Gleizes, G. and Caby, R. (2002) Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of eastern Nigeria: a synthesis. Precambrian Res., v.114, p.199-219. doi: 10.1016/S0301-9268(01)00226-1 
  28. Gandu, A.H., Ojo, S.B. and Ajakaiye, D.E. (1986) A gravity study of the Precambrian rocks in the Malumfashi area of Kaduna State, Nigeria. Tectonophysics, v.126, p.181-194. doi: 10.1016/0040-1951(86)90227-1 
  29. Garba, I. (2003) Geochemical discrimination of newly discovered rare-metal bearing and barren pegmatites in the Pan-African (600 ± 150 Ma) basement of northern Nigeria. Applied Earth Science (Transactions of the Institution of Mining and Metallurgy, Section B) v.112, p.287-292. doi: 10.1179/037174503225011270 
  30. Goodenough, K.M., Lusty, P.A.J., Roberts, N.M.W., Key, R.M. and Garba, A. (2014) Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: Age, petrogenesis, and the "pegmatite conundrum." Lithos, v.200, p.22-34. doi: 10.1016/j.lithos.2014.04.006 
  31. Harris, N.B.W., Pearce, J.A. and Tindle, A.G. (1986) Geochemical Characteristics of Collision-Zone Magmatism. Geological Society Special Publication, v.19, p.67-81. doi: 10.1144/GSL.SP.1986.019.01.04 
  32. Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical classifications of the common volcanic rocks. Canadian Journal of Earth Sciences, v.8, p.523-54. doi: 10.1139/e71-055 
  33. Imeokparia, E.G. (1981) Ba/Rb and Rb/Sr ratios as indicators of magmatic fractionation, postmagmatic alteration, and mineralization Afu Younger Granite Complex, Northern Nigeria. Geochemical Journal, v.15, p.209-219. doi: 10.2343/geochemj.15.209 
  34. Ibe, C.U. and Obiora, S.C. (2019) Geochemical characterization of Granitoids in Katchuan Irruan area: further evidence for peraluminous and shoshonitic compositions and post-collisional setting of granitic rocks in the Precambrian Basement Complex of Nigeria. Acta Geochim, v.38, p.734-752. https://doi.org/10.1007/s11631-019-00318-0 
  35. Jacobs, J. and Thomas, R.J. (2004) Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic-early Palaeozoic East African-Antarctic Orogen. Geology, v.32, p.721-724. doi: 10.1130/G20516.1 
  36. Kuster, D. and Harms, U. (1998) Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review. Lithos, v.45, p.177-195. doi: 10.1016/S0024-4937(98)00031-0 
  37. Khalaji, A.A. (2007) Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. J. Asian Earth Sci., v.144, p.56-76. 
  38. Liegeois, J.P., Navez, J., Hertogen, J. and Black, R. (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, v.45, p.1-28. doi: 10.1016/S0024-4937(98)00023-1 
  39. MacDonald, G.A. and Katsura, T. (1964) Chemical composition of Hawaiian lavas1. Journal of Petrology, v.5, p.82-133. doi: 10.1093/petrology/5.1.82 
  40. McCurry, P. (1971) Pan African Orogeny in Northern Nigeria. Geological Society of American Bulletin, v.82, p.3251-3263. doi: 10.1130/0016-7606(1971)82[3251:POINN]2.0.CO;2 
  41. Middlemost, E.A.K. (1994) Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, v.37, p.215-224. doi: 10.1016/0012-8252(94)90029-9 
  42. Melcher, F., Graupner, T., Gabler, H.E., Sitnikova, M., HenjesKunst, F., Oberthur, T., Gerdes, A. and Dewaele, S. (2013) Tantalum- niobium-tin) mineralization in African pegmatites and rare metal granites: constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geology Reviews, v.64, p.667-719. http://dx.doi.org/10. 1016/j.oregeorev.2013.09.003.  https://doi.org/10.1016/j.oregeorev.2013.09.003
  43. Nigerian Geological Survey Agency (2004) Geological map of Kwara State.
  44. Ngatcha, R.B., Okunlola, O.A., Suh, C.E., Ateh, K.I. and Hofmann, A. (2019) Petrochemical Characterization of Neoproterozoic Colomine Granitoids, SE Cameroon: Implications for Gold Mineralization. Lithos, v.344-345, p.175-192. doi: 10.1016/j.lithos.2019.06.028 
  45. O'Connor, J.T. (1965) A classification of quartz-rich igneous rock based on feldspar ratios. US Geological Survey, v.525B, p.B79-B84. 
  46. Olayinka, A.I. (1992) Geophysical siting of boreholes in crystalline basement areas of Africa. Journal of African Earth Science, v.14, p.197-207. doi: 10.1016/0899-5362(92)90097-V 
  47. Okunlola, O.A. (2005) Metallogeny of tantalum-niobium mineralization of Precambrian pegmatites of Nigeria. Mineral Wealth, v.137, p.38-50. 
  48. Obaje, N.G. (2009) Geology and Mineral resources of Nigeria, Springer, p.221. 
  49. Obiora, S.C. and Ukaegbu, V.U. (2008) Petrology and geochemical characteristics of Precambrian granitic basement complex rocks in the southernmost part of North-Central Nigeria. Chin. J. Geochem., v.28, p.377-385. doi: 10.1007/s11631-009-0377-2 
  50. Ogunyele, A.C., Oluwajana, O.A., Ehinola, I.Q., Ameh, B.E. and Salaudeen, T.A. (2019) Petrochemistry and petrogenesis of the Precambrian Basement Complex rocks around Akungba-Akoko, southwestern Nigeria, RMZ - M&G, v.66, p.173-184. doi: 10.2478/rmzmag-2019-0036 
  51. Oljira, T., Okunlola, O.A., Olatunji, A.S., Ayalew, D. and Bedada, B.A. (2022) Petrogenesis of the Neoproterozoic rocks of Megele area, Asosa, Western Ethiopia. Earth Sciences Research Journal, v.26(2), p.157-172.  https://doi.org/10.15446/esrj.v26n2.98451
  52. Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984). Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, v.25(4), p.956-983. doi: 10.1093/petrology/25.4.956 
  53. Pearce, J.A. (1996) Sources and setting of granitic rocks. Episodes, v.19, p.120-125. doi: 10.18814/epiiugs/1996/v19i4/005 
  54. Rahaman, M.A., Emofurieta, W.O. and Caen-Vachette, M. (1983) The potassic granites of Igbeti area: Further evidence of the polycyclic evolution of the Pan-African belt in southwestern Nigeria. Precambrian Research, v.22, p.75-92. doi: 10.1016/0301-9268(83)90059-1 
  55. Rollinson, H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Pearson Prentice Hal, p.1. doi: 10.4324/9781315845548 
  56. Shand, S.J. (1943) The eruptive rocks: 2nd edition, John Wiley, New York, p.444. 
  57. Sun, S.S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society Special Publication, v.42(1), p.313-345. doi: 10.1144/ GSL.SP.1989.042.01.19 
  58. Saunders, J.A., Hofstra, A.H., Goldfarb, R.J. and Reed, M.H. (2014) Geochemistry of Hydrothermal Gold Deposits. Treatise on Geochemistry, 2nd ed. Elsevier Ltd. doi.org/10.1016/B978-0-08-095975-7.01117-7. 
  59. Stammeier, J., Jung, S., Romer, R.L., Berndt, J. and Garbe-Schonberg, D. (2015) Petrology of ferroan alkali-calcic granites: synorogenic high-temperature melting of the undepleted felsic lower crust (Damara orogen, Namibia). Lithos, v.224, p.114-125. doi:10.1016/j.lithos.2015.03.004. 
  60. Taylor, S.R. and Mclennan, S.M. (1995) The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, v.33(2), p.241-265. doi: 10.1029/95RG00262 
  61. Umaru, A.O., Okunlola, O., Danbatta, U.A. and Olisa, G. (2022) Litho-structural and hydrothermal alteration mapping for delineation of gold potential zones within Kaiama, northwestern Nigeria, using airborne magnetic and radiometric data. Arabian Journal of Geoscience, v.15, p.1771. https://doi.org/10.1007/s12517-022-11048-8 
  62. Van Breemen, O., Hutchinson, J. and Bowden, P. (1975) Age and origin of the Nigerian Mesozoic granites: an Rb-Sr isotopic study. Contrib Mineral Petrol, v.50, p.157-172. doi: 10.1007/BF00371037 
  63. Victor, I.V., Lian-Xun, W., Yu-Xiang, Z., Vandi, D.K., Hafizullah, A.A., Eyo, E.N. and Liang, C. (2022) Onset of the anorogenic alkaline magmatism in the Nigerian Younger Granite province: Constraints from the Daura and Dutse complexes. Lithos, v.410-411, 106561. https://doi.org/10.1016/j.lithos.2021.106561. 
  64. Wright, J.B. (1995) Geology and Mineral resources of West Africa. George Allen and Unwin, London, p.187. 
  65. Wedepohl, K.H. (1995) The composition of the continental crust. Geochim Cosmochim Acta, v.59, p.1217-1232. doi: 10.1016/0016-7037(95)00038-2 
  66. Zorpi, M.J., Coulon, C., Orsini, J.B. and Cocirta, C. (1989) Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, v.157, p.315-329. doi: 10.1016/0040-1951(89)90147-9 
  67. Zhou, Y.Y., Zhai, M.G., Zhao, T.P., Lan, Z.W. and Sun, Q.Y. (2014) Geochronological and geochemical constraints on the petrogenesis of the early Paleoproterozoic potassic granite in the Lushan area, southern margin of the North China Craton. Journal of Asian Earth Sciences, v.94, p.190-204. doi: 10.1016/j.jseaes.2014.03.003