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Introduction
Cone-beam computed tomography (CBCT) is a special 

type of X-ray equipment that can prepare images with a 
lower radiation dose within a shorter scanning time than 
traditional CT. Among all available imaging options, CBCT  
is notable because it can provide comprehensive 3-dimen-
sional volumetric data on oral and maxillofacial lesions.1,2 
It has become popular in dental practice over the past 2 
decades. However, various factors can negatively affect the  

clinical interpretation of CBCT images, such as low intero- 
bserver/intraobserver reliability (especially for less experi-
enced practitioners).3,4 For example, Parker et al.4 reported 
that clinicians’ experience was associated with their ability 
to correctly detect periapical lesions on CBCT imaging and 
could also result in better inter-rater reliability (with better 
results found for endodontic faculty than for endodontic 
residents, and better results for endodontic residents than 
for dental students).

Artificial intelligence refers to a domain of computer sci-
ence related to building smart machines that perform tasks 
generally associated with human intelligence. Dental pro-
fessionals have used artificial intelligence for disease diag- 
nosis and treatment planning in recent years.5,6 Artificial 
intelligence can interpret complex characteristics through 
an automated approach with the highest precision possible; 
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therefore, this method can enhance diagnostic accuracy as a  
supplement to other imaging methods, especially for junior 
or general dental practitioners.7,8 According to recent re-
views, most studies have found that the diagnostic accuracy 
of artificial intelligence models using dental and maxillofa-
cial radiology (panoramic and cephalometric radiographs, 
and CBCT images) was higher than 90%.7,8

A possible solution for improving the diagnostic perform- 
ance of CBCT imaging would be to integrate it with artifi-
cial intelligence. Prior studies have endeavored to propose 
new artificial intelligence systems for clinical practice using  
oral and maxillofacial CBCT; however, those studies report-
ed varying diagnostic values for the given artificial intelli- 
gence models.9-11 Setzer et al.12 developed a deep learning 
algorithm (convolutional neural network) for the automated  
detection of preapical lesions with a recall of 0.87 and a 
precision of 0.93. In another study by Lin et al.,13 which 
developed a deep learning technique (convolutional neural  
network [U-Net]) for the automatic segmentation of the 
pulp cavity and tooth, the authors reported a recall of 0.91 
and a precision of 0.93 for the artificial intelligence applica- 
tion. However, there is a limited number of reviews explor- 
ing the performance of artificial intelligence applications 
in dentomaxillofacial CBCT imaging, and existing reviews 
have limitations in the methodology and studies includ-
ed.14,15 Therefore, a comprehensive review study is needed  
to resolve debates on this subject. The present study per-
formed a scoping review and meta-analysis to provide over- 
all estimates of the recall and precision values of artificial 
intelligence methods using oral and maxillofacial CBCT 
imaging. Recall (sensitivity) indicates the proportion of cer-
tain structures that are correctly detected. Precision (positive  
predictive value) indicates the proportion of accurately 
identified structures out of all detected structures.

Materials and Methods

Information sources and search strategy

A search of the medical literature was carried out using 
electronic databases (Embase, PubMed, and Scopus) from 
inception to October 31, 2022, with no language restriction. 
The following keywords were used: artificial intelligence 
OR deep learning OR machine learning OR automatic OR 
automated AND cone-beam computed tomography OR 
CBCT. The search was applied to the title/abstract field. 
Further hand-searching was also conducted using the refer- 
ences of the included articles. The present study was report- 

ed in accordance with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis (PRISMA) guide- 
line.16 This review was not registered.

Inclusion and exclusion criteria

Eligible studies were those that investigated artificial in-
telligence systems using oral and maxillofacial CBCT im-
ages for the automatic detection or segmentation of anato- 
mical landmarks or pathological lesions. The studies had to 
report the outcomes in terms of recall and precision values. 
The exclusion criteria included 1) reviews, case reports, edit- 
orials, and letters to the editor; 2) duplicate publications; 3) 
studies without extractable data on the study outcome; and 
4) studies for which the full texts were not available.

Study selection and data extraction

The titles and abstracts of the identified citations were 
screened by 3 independent reviewers (FA, MM, and MZ) 
using pre-designed eligibility forms. The full texts of the rel-
evant papers were obtained and evaluated for more details  
when necessary. Any disagreements were resolved by con-
sensus. The following data were extracted independently by 
3 investigators (FA, MM, and MZ) for each eligible study  
into a Microsoft Excel spreadsheet (Microsoft Corp, Red-
mond, WA USA): the first author’s name, publication year, 
sample size, artificial intelligence technique, study design, 
validation method, recall value, and precision value. Google  
Translate was used to translate non-English reports.

Risk of bias assessment

The risk of bias of the enrolled studies was examined  
using the adapted criteria of the Prediction Model Risk of 
Bias Assessment Tool (PROBAST).17 Based on PROBAST, 
the studies were rated for risk of bias and concerns about 
applicability as low, high, or unclear. The details of this  
assessment tool are summarized in Figure 1.

Statistical analysis

The primary outcomes for this review were the recall and 
precision values of artificial intelligence systems using oral 
and maxillofacial CBCT for the detection or segmentation of 
anatomical landmarks or pathological lesions. The diagnos-
tic performance (recall/precision) values of artificial intel- 
ligence were pooled using a random-effects model. The 
pooled diagnostic performance values were also estimated 
for detection and segmentation as a subgroup analysis. The 
estimates were presented with 95% confidence intervals 
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(CIs). Heterogeneity between the studies was examined 
by the I2 index, which ranges from 0.0% to 100.0%, and a 
P-value less than 0.10 was considered significant.18 Forest 
plots were utilized to describe the results of the meta-anal-
ysis. Publication bias was evaluated using a funnel plot. 
All statistical analyses were performed using Comprehen-
sive Meta-Analysis V2 software (Biostat, Englewood, NJ, 
USA).

Results
Search results and study selection

The initial database search yielded 3,206 citations. After 
the exclusion of duplicates and unsuitable articles during 
the title/abstract screening, 31 articles remained, and their 
full texts were obtained and assessed. After removing in-
eligible papers, 12 studies were finally included.9-13,19-25 A 
flowchart of the search strategy and results at each stage is  
depicted in Figure 2, in accordance with the PRISMA guide- 
lines.

Fig. 1. Risk of bias assessment of the included studies according to 
the Prediction Model Risk of Bias Assessment Tool (PROBAST).

Fig. 2. PRISMA flow diagram.
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Study characteristics

In total, 12 studies were included in this scoping review 
and meta-analysis. The publication date ranged from 2020 
to 2022. The language of all papers was English. The tech-
nique of artificial intelligence in all studies was deep learn-
ing. The detection tasks included the detection of temporo-
mandibular joint osteoarthritis and periapical lesions. The 
segmentation tasks comprised the segmentation of teeth, 
the mandibular canal, pulp cavities, the pharyngeal airway 
space, and craniomaxillofacial bone. The extracted data are 
presented in Table 1 and in forest plots.

Recall

There were 12 studies that reported recall values for arti- 
ficial intelligence using CBCT imaging. The lowest and 
highest recall values reported were 0.79 and 0.97, respec-
tively. The overall pooled recall for artificial intelligence 
was 0.91 (95% CI: 0.87-0.94; I2 =92.8%; P<0.001) (Fig. 
3). The funnel plot was suggestive of publication bias (Fig. 

4). The detection and segmentation performance of arti-
ficial intelligence using CBCT were evaluated in 4 and  
8 studies, respectively; a subgroup analysis showed that the  
overall pooled recall for artificial intelligence was 0.88 

(95% CI: 0.77-0.94; I2 =90.4%; P<0.001) for detection  
and 0.92 (95% CI: 0.87-0.96; I-squared=95.9%; P<0.001)  
for segmentation (Fig. 5).

Precision
Twelve studies reported precision values for artificial in-

telligence using CBCT. The precision in the different studies 
varied from 0.78 to 1.00. The overall pooled precision for  
artificial intelligence was 0.93 (95% CI: 0.88-0.95; I2 =  
93.5%; P<0.001) (Fig. 6). The funnel plot was relatively 
symmetrical (Fig. 7). The detection and segmentation per- 
formance of artificial intelligence using CBCT were asses- 
sed in 4 and 8 studies, respectively. In a subgroup analysis, 
the overall pooled precision for artificial intelligence was 
0.90 (95% CI: 0.77-0.96; I2 =91.7%; P<0.001) for detec-
tion and 0.94 (95% CI: 0.89-0.97; I2 =96.8%; P<0.001) for  
segmentation (Fig. 8).

Fig. 5. Recall values of artificial intelligence systems for detection 
and segmentation using oral and maxillofacial cone-beam computed 
tomography scans.Fig. 3. Recall values of artificial intelligence using oral and maxillo- 

facial cone-beam computed tomography imaging.

Fig. 4. Funnel plot assessing publication bias across studies assess- 
ing recall values of artificial intelligence using oral and maxillofacial  
cone-beam computed tomography imaging.

Fig. 6. Precision values of artificial intelligence systems using oral 
and maxillofacial cone-beam computed tomography imaging.
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Discussion

Despite the advantages of CBCT systems, the measure-
ment of CBCT findings may be negatively influenced by 
technical errors from clinicians. Recent developments in 
artificial intelligence could establish learning models (espe- 
cially deep learning) for the computer-aided clinical diagno-
sis of medical and dental health problems. These algorithms  
can automatically learn imaging patterns for discrimination 
and efficiently discover the relevant features concerning a 
specific class of object. Several recent studies have focused 
on the use of artificial intelligence models with oral and 
maxillofacial CBCT, with the goal of assisting practitioners 
in better patient management;14,19,23,26 however, no articles 
have comprehensively provided overall estimates for the 
diagnostic performance of these applications. Therefore, a 
scoping review was done on the available data regarding 
this topic in the literature. Medical databases were searched 
using various keywords to find studies that reported the re-
call and precision values for artificial intelligence systems 

using oral and maxillofacial CBCT images.
After screening thousands of sources with rigorous suit-

ability criteria, a total of 12 eligible surveys were included  
in this scoping review and meta-analysis. The overall pooled 
recall of artificial intelligence was 0.91. The subgroup anal- 
ysis showed that the overall pooled recall of artificial intel-
ligence was 0.88 for detection and 0.92 for segmentation. 
The overall pooled precision of artificial intelligence was 
0.93. The subgroup analysis found that the overall pooled 
precision of artificial intelligence was 0.90 for detection and 
0.94 for segmentation. Overall, the results of the present  
study showed excellent performance of artificial intelli-
gence in the detection and segmentation of oral and maxillo- 
facial CBCT scans.

The high diagnostic accuracy of artificial intelligence sys-
tems integrated with CBCT has led to their clinical usage in  
different dental fields, such as endodontics, implantology, 
oral and maxillofacial surgery, and orthodontics. The use of 
artificial intelligence could potentially reduce manual labor,  
wasted time, the number of required images, and concerns 
about likely health risks caused by excessive radiation dos-
es.27-30 In the endodontics field, deep learning models have 
been proposed and trained for detecting and segmenting 
teeth, alveolar bone, and periapical lesions (e.g., periapi-
cal periodontitis), using approaches that integrate orofacial 
anatomical knowledge, requiring fewer images for train-
ing.12,25,30 With respect to dental implant planning, 3-dimen-
sional deep convolutional neural network and region-based 
convolutional neural network algorithms have been develop- 
ed for qualitative and quantitative evaluations of alveolar 
bone with high performance.29,31,32 Some studies have used 
deep learning and machine learning techniques to diagnose 
and classify temporomandibular joint diseases, perform 
maxillary and mandible segmentation, and guide oral and 
maxillofacial surgeons with acceptable diagnostic accu- 
racy.28,33,34 In the orthodontics field, some studies have pro-
posed deep learning frameworks for cluster-based segmen-
tation and automatic landmark detection in cephalometric 
analysis.35,36

Tooth segmentation is an essential step in generating 3-di-
mensional models for the clinical management of maxillo- 
facial abnormalities. Segmentation is commonly conducted 
manually, but manual segmentation is a labor-intensive task 
and depends on the operator’s expertise.37 CBCT segmen-
tation has some challenges, such as inadequate density, im-
age artifacts, noise, and limited contrast resolution.37,38 The 
development and validation of new artificial intelligence 
systems with large datasets (such as the automated convolu- 
tional neural network [U-Net] and ToothNet algorithms) in 

Fig. 7. Funnel plot assessing publication bias across studies assess- 
ing precision values of artificial intelligence using oral and maxillo- 
facial cone-beam computed tomography imaging.

Fig. 8. Precision values of artificial intelligence for detection and 
segmentation using oral and maxillofacial cone-beam computed 
tomography scans.
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recent years have been solutions to partially overcome the 
weaknesses of manual CBCT segmentation.39,40

The present scoping review and meta-analysis has some 
limitations. First, there was high heterogeneity between the 
individual studies, which could be explained by differences 
in study location, objectives, sample size, and interobserver/ 
intraobserver agreement. A subgroup analysis was perform- 
ed according to system tasks to minimize the influence of 
heterogeneity; however, the heterogeneity remained high 
for the recall and precision outcomes. It is noteworthy that 
publication bias could potentially explain the heterogeneity 
for recall. Second, a high risk of bias was observed in most 
studies, mainly resulting from inadequate sample size and 
incomplete reporting. Overall, it is proposed to design and 
conduct more homogeneous research. Third, the gray liter-
ature was not searched for unpublished studies. Finally, it is 
also suggested that systematic reviews and meta-analyses 
should be conducted that include other diagnostic perfor-
mance indices, such as the Dice similarity coefficient.

In conclusion, the results of this scoping review and meta- 
analysis demonstrated the excellent performance of artificial  
intelligence in the detection and segmentation of oral and 
maxillofacial CBCT scans. Integrating artificial intelligence  
and CBCT imaging has the potential to speed up the dental 
workflow, streamline oral healthcare, and facilitate preven-
tive dentistry.
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