Acknowledgement
The authors acknowledge this work is supported by the talent introduction project of Chongqing University (02090011044159), and Fundamental Research Funds for the Central Universities (2022CDJXY-005).
References
- Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M., Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
- Alazwari, M.A., Daikh, A.A., Houari, M.S., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Allahyari, E., Asgari, M. and Jafari, A.A. (2020), "Nonlinear size-dependent vibration behavior of graphene nanoplate considering surfaces effects using a multiple-scale technique", Mech. Adv. Mater. Struct., 27(9), 697-706. https://doi.org/10.1080/15376494.2018.1494870.
- Arani, A.G. and Zamani, M.H. (2018), "Nonlocal free vibration analysis of FG-porous shear and normal deformable sandwich nanoplate with piezoelectric face sheets resting on silica aerogel foundation", Arab. J. Sci. Eng., 43(9), 4675-4688. https://doi.org/10.1007/s13369-017-3035-8
- Arefi, M., Kiani, M. and Zamani, M.H. (2020), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378.
- Arefi, M. and Zenkour, A.M. (2017), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Physica B-Condensed Matter., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066.
- Assie, A.E., Mohamed, S.A., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Static buckling of 2D FG porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258. https://doi.org/10.22055/jacm.2022.41265.3723.
- Bai, Y.H., Liu, R.M. and Wang, L.F. (2021), "Nonlinear thermal vibration of a nanoplate attached to a cavity", Mater. Res. Express, 8(11), 115009. https://doi.org/10.1088/2053-1591/ac36fc.
- Babaei, H. (2022a), "Nonlinear analysis of size‑dependent frequencies in porous FG curved nanotubes based on nonlocal strain gradient theory", Eng. Struct., 38(Suppl3), S1717-S1734. https://doi.org/10.1007/s00366-021-01317-7.
- Babaei, H. (2022b), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math. Comput., 413, 126606. https://doi.org/10.1016/j.amc.2021.126606.
- Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393-414 https://doi.org/10.12989/anr.2017.5.4.393.
- Barati, M.R. (2018), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates", Europ. J. Mech. A-Solids, 67, 215-230. https://doi.org/10.1016/j.euromechsol.2017.09.001.
- Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639.
- Chen, T., Chen, H.X. and Liu, L.M. (2020), "Vibration energy flow analysis of periodic nanoplate structures under thermal load using fourth-order strain gradient theory", Acta Mechanica, 231(10), 4365-4379. https://doi.org/10.1007/s00707-020-02765-w.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus., 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
- Cuong-Le, T., Nguyen, K.D.D., Hoang-Le, M., Sang-To, T., PhanVu, P. and Magd, A.W. (2022), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B-Condensed Matter., 631, 413726. ttps://doi.org/10.1016/j.physb.2022.41372.
- Dangi, C. and Lal, R. (2022), "Nonlinear thermal effect on free vibration of FG rectangular mindlin nanoplate of bilinearly varying thickness via Eringen's nonlocal theory", J. Vib. Eng. Technol., https://doi.org/10.1007/s42417-022-00531-x.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6),433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Ding, H.X. and She, G.L. (2023), "Nonlinear resonance of axially moving graphene platelet reinforced metal foam cylindrical shells with geometric imperfection", Archiv. Civil Mech. Eng., http://dx.doi.org/10.1007/s43452-023-00634-6
- Ebrahimi, F. and Barati, M.R. (2017), "Damping vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory", Smart Mater. Struct., 26(6), 065018. https://doi.org/10.1088/1361-665X/aa6eec.
- Ebrahimi, F. and Hosseini, S.H. (2020), "Double harmonically excited nonlinear vibration of viscoelastic piezoelectric nanoplates subjected to thermo-electro-mechanical forces", J. Vib. Control, 26, 430-446. https://doi.org/10.1177/1077546319889785.
- Emam, S.A., Eltaher, M.A., Khater, M.E. and Abdalla, W.S. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238.
- Emadi, M., Nejad, M.Z., Ziaee, S. and Hadi, A. (2021), "Buckling analysis of arbitrary two-directional functionally graded nanoplate based on nonlocal elasticity theory using generalized differential quadrature method", Steel Compos. Struct., 39(5) 565-581. https://doi.org/10.12989/scs.2021.39.5.565.
- Eskandari, S.M., Shariati, M., Asiaban, N. and Eskandari, J.J. (2021), "Bending, buckling and vibrations analysis of the graphene nanoplate using the modified couple stress theory", Mechanika, 27(5), 376-384. https://doi.org/10.5755/j02.mech.25299.
- Gan, L.L. and She, G.L. (2023), "Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions", Geomech. Eng., 32(5), 541-551. https://doi.org/10.12989/gae.2023.32.5.541.
- Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
- Hendi, A., Eltaher, M.A, Mohamed, S.A. and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. http://doi.org/DOI10.12989/scs.2021.41.6.787.
- Ke, L.L., Liu, C. and Wang, Y.S. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E-Low-Dimensional Syst. Nanostruct., 66, 93-106.https://doi.org/10.1016/j.physe.2014.10.002.
- Li, C., Liu, J.J., Cheng, M. and Fan, X.L. (2017), "Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces", Compos. Part B-Eng., 116, 153-169. https://doi.org/10.1016/j.compositesb.2017.01.071.
- Li, C.L., Tian, X.G. and He, T.H. (2021), "Nonlocal thermoviscoelasticity and its application in size-dependent responses of bi-layered composite viscoelastic nanoplate under nonuniform temperature for vibration control", Mech. Adv. Mater. Struct., 28 (17), 1797-1811. https://doi.org/10.1080/15376494.2019.1709674.
- Li, M.G., Zhang, Q.Y., Wang, B.B. and Zhao, M.H. (2021), "Analysis of flexural vibrations of a piezoelectric semiconductor nanoplate driven by a time-harmonic force", Materials, 14(14), 3926. https://doi.org/10.3390/ma14143926.
- Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B. (2023), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel. Compos, Struct., 46(5) 649-658. https://doi.org/10.12989/scs.2023.46.5.649.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.
- Mahmoudpour, E., Hosseini-Hashemi, S.H. and Faghidian, S.A. (2019), "Nonlinear resonant behaviors of embedded thick FG double layered nanoplates via nonlocal strain gradient theory", Microsyst. Technologies-Micro Nanosystems-Inform. Storage Processing Syst., 25(3) 951-964. https://doi.org/10.1007/s00542-018-4198-2.
- Melaibari, A., Mohamed, S.A., Assie, A.E., Shanab, R.A. and Eltaher, M.A. (2023), "Static response of 2D FG porous plates resting on elastic foundation using midplane and neutral surfaces with movable constraints", Mathematics, 10(24), 4784. http://dx.doi.org/10.3390/math10244784.
- Mohamed, N., Mohamed, S.A. and Eltaher, M. A. (2021), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. http://dx.doi.org/10.1007/s00366-020-00976-2.
- Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. http://dx.doi.org/10.12989/sem.2019.70.6.737.
- Selim, M.M. and El-Safty, S.A. (2021), "Vibration analysis of nanoplate with the effects of surface irregularity and initial stresses", J. Nanoelectron. Optoelectronic., 16(1),48-53. https://doi.org/10.1166/jno.2021.2901.
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37 (1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
- She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Singh, P.P. and Azam, M.S. (2021), "Free vibration and buckling analysis of elastically supported transversely inhomogeneous functionally graded nanoplate in thermal environment using Rayleigh-Ritz method", J. Vib. Control, 27, 23-24, 2835-2847. 1077546320966932. https://doi.org/10.1177/1077546320966932.
- Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res., 10 (1), 25-42. https://doi.org/10.12989/anr.2021.10.1.025.
- Tran, M.T. and Cuong-Le, T. (2022), "A nonlocal IGA numerical solution for free vibration and buckling analysis of Porous Sigmoid Functionally Graded (P-SFGM) nanoplate", Int. J. Struct. Stab. Dyn., 22(16). https://doi.org/10.1142/S0219455422501930.
- Wang, Y., Li, F.M., Wang, Y.Z. and Jing, X.J. (2017), "Nonlinear responses and stability analysis of viscoelastic nanoplate resting on elastic matrix under 3:1 internal resonances", Int. J. Mech. Sci., 128, 94-104. https://doi.org/10.1016/j.ijmecsci.2017.04.010.
- Xu, X.L., Zhang, C.W., Musharavati, F., Sebaey, T.A. and Khan, A. (2021), "Dispersion of waves characteristics of laminated composite nanoplate", Steel Compos. Struct., 40(3) 355-367. https://doi.org/10.12989/scs.2021.40.3.355.
- Arani, A.G., Arani, A.H. and Haghparast, E. (2021), "Flexoelectric and surface effects on vibration frequencies of annular nanoplate", Indian J. Phys., 95(10), 2063-2083. https://doi.org/10.1007/s12648-020-01854-9.
- Barati, M.R. (2018), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates", Europ. J. Mech. A-Solids, 67, 215-230. https://doi.org/10.1016/j.euromechsol.2017.09.001.
- Barati, M.R. and Shahverdi, H. (2018), "Forced vibration of porous functionally graded nanoplates under uniform dynamic load using general nonlocal stress-strain gradient theory", J. Vib. Control, 24(20), 4700-4715. https://doi.org/10.1177/1077546317733832.
- Ebrahimi, F. and Hosseini, S.H. (2020), "Investigation of flexoelectric effect on nonlinear forced vibration of piezoelectric/functionally graded porous nanocomposite resting on viscoelastic foundation", J. Strain Anal. Eng. Des., 55(1-2), 53-68. https://doi.org/10.1177/0309324719890868.
- Eremeyev, V.A. (2022), "Advances in micro- and nanomechanics", Nanomaterials, 12(24). https://doi.org/10.3390/nano12244433.
- Fard, K.M., Kavanroodi, M.K., Malek-Mohammadi, H. and Pourmoayed, A.R. (2022), "Buckling and vibration analysis of a double-layer graphene sheet coupled with a piezoelectric nanoplate", J. Appl. Comput. Mech., 8(1), 129-143. https://doi.org/10.22055/JACM.2020.32145.1976.
- Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
- Fazeli, H., Adamian, A. and Hosseini-Sianaki, A. (2021), "Influence of initial geometric imperfection on static and free vibration analyses of porous FG nanoplate using an isogeometric approach", J. Brazil. Soc. Mech. Sci. Eng., 43(4), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
- Ghadiri, M. and Hosseini, S.H. (2021), "Nonlinear forced vibration of graphene/piezoelectric sandwich nanoplates subjected to a mechanical shock", J. Sandw. Struct. Mater., 23(3), 956-987. https://doi.org/10.1177/1099636219849647.
- Jafari, E., Fakoor, M. and Karvand, E. (2019), "Hygrothermal free vibration of multiple magneto-electro-elastic nanoplate system via higher-order nonlocal strain gradient theory", Appl. Phys. A-Mater. Sci. Processing, 125(9), 607.https://doi.org/10.1007/s00339-019-2855-7,
- Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
- Mahmoudpour, E. (2020), "Nonlinear resonant behavior of thick multilayered nanoplates via nonlocal strain gradient elasticity theory", Acta Mechanica, 231(6), 2651-2667. https://doi.org/10.1007/s00707-020-02636-4.
- Mazur, O. and Awrejcewicz, J. (2022), "The nonlocal elasticity theory for geometrically nonlinear vibrations of double-layer nanoplate systems in magnetic field", Meccanica, 57(11), 2835-2847. https://doi.org/10.1007/s11012-022-01602-9.
- Mohammadi, M. and Rastgoo, A. (2019), "Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core", Struct. Eng. Mech., 69(2), 131-143. https://doi.org/10.12989/sem.2019.69.2.131.
- Mohammadi, M. and Rastgoo, A. (2020), "Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium", Mech. Adv. Mater. Struct., 27(20), 1709-1730. https://doi.org/10.1080/15376494.2018.1525453.
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeitaba, S.B. (2019), "Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM", Steel Compos. Struct., 33(2), 307-318. https://doi.org/10.12989/scs.2019.33.2.307.
- Sahmani, S., Fattahi, A.M. and Ahmed, N.A. (2020), "Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL", Eng. Comput., 36(4), 1559-1578. https://doi.org/10.1007/s00366-019-00782-5.
- Selim, M.M., Gepreel, K.A., Mohammed, I.M.O. and Hussin, A.M. (2022), "Vibration of initially stressed nonlocal irregular nanoplate using wave propagation approach", Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2131936.
- Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
- Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3) 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
- Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dyn., https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2023.2180556.
- Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://10.12989/anr.2022.13.5.465
- Zhou, L., Wang, J., Li, X., Liu, C., Liu, P., Ren, S. and Li, M. (2021), "The magneto-electro-elastic multi-physics coupling element free Galerkin method for smart structures in statics and dynamics problems", Thin. Wall. Struct., 169, 108431. https://doi.org/10.1016/j.tws.2021.108431.
- Zhou, L., Wang, J., Liu, M., Li, M. and Chai, Y. (2022), "Evaluation of the transient performance of magneto-electro-elastic based structures with the enriched finite element method", Compos. Struct., 280, 114888. https://doi.org/10.1016/j.compstruct.2021.114888.
- Zhu, Y. and Chang, T.H. (2015), "A review of microelectromechanical systems for nanoscale mechanical characterization", J. Micromech. Microeng., 25(9), 093001. https://doi.org/10.1088/0960-1317/25/9/093001.