DOI QR코드

DOI QR Code

Dynamic analysis of sandwich plate with viscoelastic core based on an improved method for identification of material parameters in GHM viscoelastic model

  • Mojtaba Safari (School of Packaging, College of Agriculture and Natural Resources, Michigan State University) ;
  • Hasan Biglari (Department of Mechanical Engineering, University of Tabriz) ;
  • Mohsen Motezaker (Department of Mechanical and Aerospace Engineering, University of Virginia)
  • 투고 : 2021.02.06
  • 심사 : 2023.05.18
  • 발행 : 2023.06.25

초록

In this paper, the dynamic response of a simply-supported composite sandwich plate with a viscoelastic core based on the Golla-Hughes-McTavish (GHM) viscoelastic model is investigated analytically. The formulation is developed using the three-layered sandwich panel theory. Hamilton's principle has been employed to derive the equations of motion. Since classical models, like kelvin-voigt and Maxwell models, cannot express a comprehensive description of the dynamic behavior of viscoelastic material, the GHM method is used to model the viscoelastic core of the plate in this research. The main advantage of the GHM model in comparison with classical models is the consideration of the frequency-dependent characteristic of viscoelastic material. Identification of the material parameters of GHM mini-oscillator terms is an essential procedure in applying the GHM model. In this study, the focus of viscoelastic modeling is on the development of GHM parameters identification. For this purpose, a new method is proposed to find these constants which express frequency-dependent behavior characterization of viscoelastic material. Natural frequencies and loss factors of the sandwich panel based on ESL and three-layered theories in different geometrics are described at 30℃ and 90℃; also, the comparisons show that obtained natural frequencies are grossly overestimated by ESL theory. The argumentations of differences in natural frequencies are also illustrated in detail. The obtained results show that the GHM model presents a more accurate description of the plate's dynamic response by considering the frequency dependency behavior of the viscoelastic core.

키워드

참고문헌

  1. Bagley, R.L. and Torvik, P.J. (1983), "Fractional calculus-a different approach to the analysis of viscoelastically damped structures", AIAA J., 21(5), 741-748. https://doi.org/10.2514/3.8142.
  2. Biglari, H. and Jafari, A.A. (2010a), "Static and free vibration analyses of doubly curved composite sandwich panels with soft core based on a new three-layered mixed theory", Proceedings Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(11), 2332-2349. https://doi.org/10.1243/09544062JMES2143.
  3. Biglari, H. and Jafari, A.A. (2010b), "High-order free vibrations of doubly-curved sandwich panels with flexible core based on a refined three-layered theory", Compos. Struct., 92(11), 2685-2694. https://doi.org/10.1016/j.compstruct.2010.03.017.
  4. Drozdov, A.D. (1998), Mechanics of Viscoelastic Solids, John Wiley & Sons, Inc., Hoboken, New Jersey, United States of America.
  5. Felippe, W. and Barbosa, F. (2017), "A nondeterministic GHM based model applied to sandwich beams", Procedia Eng., 199, 1098-1103. https://doi.org/10.1016/j.proeng.2017.09.200.
  6. Ferreira, A. (2005), "Analysis of composite plates using a layer wise theory and multiquadrics discretization", Mech. Adv. Mater. Struct., 12(2), 99-112. https://doi.org/10.1080/15376490490493952.
  7. Gutierrez-Lemini, D. (2014), Engineering Viscoelasticity, Springer, Arlington, TX, United States of America.
  8. Hamed, E. and Rabinovitch, O. (2009), "Modeling and dynamics of sandwich beams with a viscoelastic soft core", AIAA journal, 47(9), 2194-2211. https://doi.org/10.2514/1.41840.
  9. Hu, Y.-C. and Huang, S.-C. (2000), "The frequency response and damping effect of three-layer thin shell with viscoelastic core", Comp. Struct., 76(5), 577-591. https://doi.org/10.1016/S0045-7949(99)00182-0.
  10. Lakes, R. and Lakes, R.S. (2009), Viscoelastic Materials, Cambridge University Press, New York, NY, United States of America.
  11. Lam, M.J., Inman, D.J. and Saunders, W. R. (1997), "Vibration control through passive constrained layer damping and active control", J. Intelli. Mater. Syst. Struct., 8(8), 663-677. https://doi.org/10.1177/1045389X97008008
  12. Ledi, K., Hamdaoui, M., Robin, G. and Daya, E. (2018), "An identification method for frequency dependent material properties of viscoelastic sandwich structures", J. Sound Vib., 428, 13-25. https://doi.org/10.1016/j.jsv.2018.04.031.
  13. McTavish, D.J. (1987), "The mini-oscillator technique: a finite eleent method for the modelling of linear viscoelastic structures", UTIAS Report No. 323; University of Toronto Institute for Aerospace Studies.
  14. McTavish, D.J. and Hughes, P. C. (1993), "Modeling of linear viscoelastic space structures", J. Vib. Acoust., 115(1), 103-110. https://doi.org/10.1115/1.2930302.
  15. Meunier, M. and Shenoi, R. (2001), "Dynamic analysis of composite sandwich plates with damping modelled using highorder shear deformation theory", Compos. Struct., 54(2-3), 243-254. https://doi.org/10.1016/S0263-8223(01)00094-0.
  16. Meunier, M. and Shenoi, R. (2003), "Forced response of FRP sandwich panels with viscoelastic materials", J. Sound Vib., 263(1), 131-151. https://doi.org/10.1016/S0022-460X(02)01101-X.
  17. Moreira, R., de Sousa, R.A. and Valente, R. (2010), "A solid-shell layer-wise finite element for non-linear geometric and material analysis", Compos. Struct., 92(6), 1517-1523. https://doi.org/10.1016/j.compstruct.2009.10.032.
  18. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Boca Raton, FL, United States of America.
  19. Safari, M. and Biglari, H. (2019), "Transient response of sandwich plate with transversely flexible and viscoelastic frequencydependent material core based on three layered theory", J. Sandwich Struct. Mater., 23(4), 1081-1117. https://doi.org/10.1177/1099636219854187.
  20. Skukis, E., Akishin, P. and Barkanov, E. (2012), "Inverse technique for the viscoelastic material properties characterisation", Construct. Sci., 13, 47-52. https://doi.org/10.2478/v10311-012-0007-9.
  21. Trindade, M., Benjeddou, A. and Ohayon, R. (2000), "Modeling of frequency-dependent viscoelastic materials for active-passive vibration damping", J. Vib. Acoust., 122(2), 169-174. https://doi.org/10.1115/1.568429.
  22. Vasques, C., Moreira, R. and Rodrigues, J.D. (2006), "Experimental identification of GHM and ADF parameters for viscoelastic damping modeling", ECCM 2006-III Euro. Conf. Comput. Mech. Solids, Struct. Coupled Probl. Eng.. https://hdl.handle.net/10216/69578
  23. Waldir Filho, F. and Barbosa, F.S. (2014), "Comparisons of numerical and experimental evaluation of viscoelastic sandwich beams", Mecanica Computacional, 33(23), 1557-1569.
  24. Wang, Y. and Inman, D. J. (2013), "Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping", J. Sound Vib., 332(23), 6177-6191. https://doi.org/10.1016/j.jsv.2013.06.016.