References
- Bagley, R.L. and Torvik, P.J. (1983), "Fractional calculus-a different approach to the analysis of viscoelastically damped structures", AIAA J., 21(5), 741-748. https://doi.org/10.2514/3.8142.
- Biglari, H. and Jafari, A.A. (2010a), "Static and free vibration analyses of doubly curved composite sandwich panels with soft core based on a new three-layered mixed theory", Proceedings Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(11), 2332-2349. https://doi.org/10.1243/09544062JMES2143.
- Biglari, H. and Jafari, A.A. (2010b), "High-order free vibrations of doubly-curved sandwich panels with flexible core based on a refined three-layered theory", Compos. Struct., 92(11), 2685-2694. https://doi.org/10.1016/j.compstruct.2010.03.017.
- Drozdov, A.D. (1998), Mechanics of Viscoelastic Solids, John Wiley & Sons, Inc., Hoboken, New Jersey, United States of America.
- Felippe, W. and Barbosa, F. (2017), "A nondeterministic GHM based model applied to sandwich beams", Procedia Eng., 199, 1098-1103. https://doi.org/10.1016/j.proeng.2017.09.200.
- Ferreira, A. (2005), "Analysis of composite plates using a layer wise theory and multiquadrics discretization", Mech. Adv. Mater. Struct., 12(2), 99-112. https://doi.org/10.1080/15376490490493952.
- Gutierrez-Lemini, D. (2014), Engineering Viscoelasticity, Springer, Arlington, TX, United States of America.
- Hamed, E. and Rabinovitch, O. (2009), "Modeling and dynamics of sandwich beams with a viscoelastic soft core", AIAA journal, 47(9), 2194-2211. https://doi.org/10.2514/1.41840.
- Hu, Y.-C. and Huang, S.-C. (2000), "The frequency response and damping effect of three-layer thin shell with viscoelastic core", Comp. Struct., 76(5), 577-591. https://doi.org/10.1016/S0045-7949(99)00182-0.
- Lakes, R. and Lakes, R.S. (2009), Viscoelastic Materials, Cambridge University Press, New York, NY, United States of America.
- Lam, M.J., Inman, D.J. and Saunders, W. R. (1997), "Vibration control through passive constrained layer damping and active control", J. Intelli. Mater. Syst. Struct., 8(8), 663-677. https://doi.org/10.1177/1045389X97008008
- Ledi, K., Hamdaoui, M., Robin, G. and Daya, E. (2018), "An identification method for frequency dependent material properties of viscoelastic sandwich structures", J. Sound Vib., 428, 13-25. https://doi.org/10.1016/j.jsv.2018.04.031.
- McTavish, D.J. (1987), "The mini-oscillator technique: a finite eleent method for the modelling of linear viscoelastic structures", UTIAS Report No. 323; University of Toronto Institute for Aerospace Studies.
- McTavish, D.J. and Hughes, P. C. (1993), "Modeling of linear viscoelastic space structures", J. Vib. Acoust., 115(1), 103-110. https://doi.org/10.1115/1.2930302.
- Meunier, M. and Shenoi, R. (2001), "Dynamic analysis of composite sandwich plates with damping modelled using highorder shear deformation theory", Compos. Struct., 54(2-3), 243-254. https://doi.org/10.1016/S0263-8223(01)00094-0.
- Meunier, M. and Shenoi, R. (2003), "Forced response of FRP sandwich panels with viscoelastic materials", J. Sound Vib., 263(1), 131-151. https://doi.org/10.1016/S0022-460X(02)01101-X.
- Moreira, R., de Sousa, R.A. and Valente, R. (2010), "A solid-shell layer-wise finite element for non-linear geometric and material analysis", Compos. Struct., 92(6), 1517-1523. https://doi.org/10.1016/j.compstruct.2009.10.032.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Boca Raton, FL, United States of America.
- Safari, M. and Biglari, H. (2019), "Transient response of sandwich plate with transversely flexible and viscoelastic frequencydependent material core based on three layered theory", J. Sandwich Struct. Mater., 23(4), 1081-1117. https://doi.org/10.1177/1099636219854187.
- Skukis, E., Akishin, P. and Barkanov, E. (2012), "Inverse technique for the viscoelastic material properties characterisation", Construct. Sci., 13, 47-52. https://doi.org/10.2478/v10311-012-0007-9.
- Trindade, M., Benjeddou, A. and Ohayon, R. (2000), "Modeling of frequency-dependent viscoelastic materials for active-passive vibration damping", J. Vib. Acoust., 122(2), 169-174. https://doi.org/10.1115/1.568429.
- Vasques, C., Moreira, R. and Rodrigues, J.D. (2006), "Experimental identification of GHM and ADF parameters for viscoelastic damping modeling", ECCM 2006-III Euro. Conf. Comput. Mech. Solids, Struct. Coupled Probl. Eng.. https://hdl.handle.net/10216/69578
- Waldir Filho, F. and Barbosa, F.S. (2014), "Comparisons of numerical and experimental evaluation of viscoelastic sandwich beams", Mecanica Computacional, 33(23), 1557-1569.
- Wang, Y. and Inman, D. J. (2013), "Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping", J. Sound Vib., 332(23), 6177-6191. https://doi.org/10.1016/j.jsv.2013.06.016.