DOI QR코드

DOI QR Code

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi (College of Architecture and Civil Engineering, Xinjiang University) ;
  • Caijian Liu (College of Architecture and Civil Engineering, Xinjiang University) ;
  • Alipujiang Jierula (College of Architecture and Civil Engineering, Xinjiang University)
  • Received : 2022.05.06
  • Accepted : 2023.05.08
  • Published : 2023.06.25

Abstract

Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China through grant number 51968068.

References

  1. ACI 31819 (2019), Building code requirements for structural concrete and commentary, American Concrete Institute; Farmington Hills, MI, United States of America.
  2. AIJ (2008), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures, Architectural Institute of Japan, Tokyo, Japan.
  3. Alrebeha, S.K. and Ekmekyapar, T. (2019), "Structural performance of short concrete-filled steel tube columns with external and internal stiffening under axial compression", Struct., 20, 702-716. https://doi.org/10.1016/j.istruc.2019.06.015.
  4. American Society for Testing and Materials (2017a), "Standard test method for compressive strength of cylindrical concrete specimens", Annual Book of ASTM Standards No. C39; American Society for Testing and Materials,West Conshohocken, USA.
  5. American Society for Testing and Materials (2017b), "Standard test methods and definitions for mechanical testing of steel products", Annual Book of ASTM Standards No. A370; American Society for Testing and Materials, West Conshohocken, USA.
  6. ANSI/AISC A360-16 (2016), Specification for structural steel buildings, American Institute of Steel Construction; Chicago, IL, United States of America.
  7. Brown, N.K., Kowalsky, M.J. and Nau, J.M. (2015), "Impact of d/t on seismic behavior of reinforced concrete filled steel tubes", J. Constr. Steel Res., 107, 111-123. http://dx.doi.org/10.1016/j.jcsr.2015.01.013.
  8. Cai, J.M., Pan, J.L. and Wu, Y.F. (2015), "Mechanical behavior of steel-reinforced concrete-filled steel tubular (SRCFST) columns under uniaxial compressive loading", Thin-Wall. Struct., 97, 1-10. http://dx.doi.org/10.1016/j.tws.2015.08.028.
  9. Chitawadagi, M.V., Chitawadagi, M.C. and Kulkarni, S.M. (2010), "Axial strength of circular concrete-filled steel tube columns-DOE approach", J. Constr. Steel Res., 66(10), 1248-1260. https://doi.org/10.1016/j.jcsr.2010.04.006.
  10. El-Heweity, M. M. (2012), "On the performance of circular concrete-filled high strength steel columns under axial loading", Alexandria Eng. J., 51(2), 109-119. https://doi.org/10.1016/j.aej.2012.05.006.
  11. Endo, T., Shioi, Y., Hasegawa, A. and Wang, H.J. (2000), "Experimental study on reinforced concrete filled steel tubular structure", Proceedings of 25th Conference on Our World in Concrete & Structures, Singapore, August.
  12. Eurocode 4 (2005), Design of Composite Steel and Concrete Structures, European Committee for Standardization; Brussels, Belgium.
  13. GB/T 50081-2019(2019), Standard for Test Methods of Concrete Physical and Mechanical Properties, Ministry of Housing and Urban-Rural Construction of the People's Republic of China; Beijing, China.
  14. GB 50936-2014 (2014), Technical Code for Concrete Filled Steel Tubular Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China.
  15. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  16. Guo, Y.C., Xiao, S.H., Zeng, J.J., Su, J.Y., Li, T.Z. and Xie, Z.H. (2022), "Behavior of concrete-filled FRP tube columns internally reinforced with FRP-steel composite bars under axial compression", Constr. Build. Mater., 315, 125714. https://doi.org/10.1016/j.conbuildmat.2021.125714.
  17. Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63(2), 182-93. https://doi.org/10.1016/j.jcsr.2006.04.004.
  18. Hadi, M.N.S., Khan, Q.S. and Sheikh, M.N. (2016), "Axial and flexural behavior of unreinforced and FRP bar reinforced circular concrete filled FRP tube columns", Constr. Build. Mater., 122, 43-53. http://dx.doi.org/10.1016/j.conbuildmat.2016.06.044.
  19. Hamidian, M.R., Jumaat, M.Z., Alengaram, U.J., Sulong, N.H.R. and Shafigh, P. (2016), "Pitch spacing effect on the axial compressive behaviour of spirally reinforced concrete-filled steel tube (SRCFT)", Thin-Wall. Struct., 100(2016), 213-223. https://doi.org/10.1016/j.tws.2015.12.011.
  20. Han, J.S. and Cong, S.P. (2011), "Experimental and numerical study on bar-reinforced concrete filled steel tubular columns under axial compression", Open Civil Eng. J., 5, 109-115. https://doi.org/10.2174/1874149501105010109.
  21. Hasana, H.G., Ekmekyapar, T. and Shehab, B.A. (2019), "Mechanical performances of stiffened and reinforced concrete-filled steel tubes under axial compression", Mar. Struct., 65, 417-432. https://doi.org/10.1016/j.marstruc.2018.12.008.
  22. Huang, Z.C., Uy, B., Li, D.X. and Wang, J. (2020), "Behaviour and design of ultra-high-strength CFST members subjected to compression and bending", J. Constr. Steel Res., 175, 106351. https://doi.org/10.1016/j.jcsr.2020.106351.
  23. Jin, L., Fan, L.L., Li, D. and Du, X.L. (2020), "Size effect of square concrete-filled steel tubular columns subjected to lateral shear and axial compression: modelling and formulation", Thin-Wall. Struct., 157, 107158. https://doi.org/10.1016/j.tws.2020.107158.
  24. Kenarangi, H. and Bruneau, M. (2019), "Experimental study on composite action in reinforced concrete-filled steel-tube shaft foundations", J. Bridge Eng., 24(7), 04019060. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001407.
  25. Kim, H.J., Ham, J.S., Park, K.T. and Hwang, W.S. (2017), "Numerical study of internally reinforced circular CFT column-to-foundation connection according to design variables", Steel Compos. Struct., 23(4), 445-452. https://doi.org/10.12989/scs.2017.23.4.445.
  26. Kuranovas, A., Goode, D., Kvedaras, A.K. and Zhong, S.T. (2009), "Load-bearing capacity of concrete-filled steel columns", J. Civil Eng. Manage., 15(1), 21-33. https://doi.org/10.3846/1392-3730.2009.15.21-33.
  27. Liu, J.P., Gan, D., Zhou, X.H. and Yan, B. (2018), "Cyclic shear behavior and shear strength of steel tubed-reinforced-concrete short columns", Adv. Struct. Eng., 21(11), 1749-1760. https://doi.org/10.1177/1369433218754544.
  28. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  29. Oyawa, W.O., Sugiura, K. and Watanabe, E. (2001), "Polymer concrete-filled steel tubes under axial compression", Constr. Build. Mater., 15(4), 187-97. https://doi.org/10.1016/S0950-0618(00)00034-9.
  30. Popovics, S. (1973), "A numerical approach to the compete stress-strain curve of concrete", Cement Concrete Res., 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3.
  31. Portoles, J.M., Serra, E. and Romero, M.L. (2013). "Influence of ultra-high strength infill in slender concrete-filled steel tubular columns", J. Constr. Steel Res., 86, 107-114. http://dx.doi.org/10.1016/j.jcsr.2013.03.016.
  32. Qiao, Q.Y., Zhang, W.W., Mou, B. and Cao, W.L. (2019), "Seismic behavior of exposed concrete filled steel tube column bases with embedded reinforcing bars: experimental investigation", Thin-Wall. Struct., 136, 367-381. https://doi.org/10.1016/j.tws.2018.12.039.
  33. Ren, Q.X., Han, L.H., Lam D. and Hou, C. (2014), "Experiments on special-shaped CFST stub columns under axial compression", J. Constr. Steel Res., 98(July), 123-133. https://doi.org/10.1016/j.jcsr.2014.03.002.
  34. Richart, F.E., Brandtzg, A. and Brown, R.L. (1928), A Study of the Failure of Concrete Under Combined Compressive Stresses, University of Illinois at Urbana Champaign, College of Engineering, Engineering Experiment Station. http://hdl.handle.net/2142/4277.
  35. Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477).
  36. Saenz, L.P. (1964), "Equation for the stress-strain curve of concrete", ACI J, 61(9), 1229-1235. http://refhub.elsevier.com/S0143-974X(20)30161-9/rf0155.
  37. Shu G.P., Liu X.Y. and Miao W. (2010), "Experimental research and bearing capacity analysis of axially compressive reinforced concrete-filled steel tube short column", Industrial Constr., 40(4), 100-6. http://refhub.elsevier.com/S0141-0296(19)31009-0/h0145. 1009-0/h0145
  38. Tao, Z., Wang, Z.B. and Yu, Q. (2013), "Finite element modeling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89(5), 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001.
  39. Tomii, M., Sakino, K. and Xiao, Y. (1987), "Ultimate moment of reinforced concrete short columns confined in steel tube", Proceedings of Pacific Conference on Earthquake Engineering, Weirakai, New Zealand, August.
  40. Usami, T. and Ge, H.B. (1994), "Ductility of concrete-filled steel box columns under cyclic loading", J. Struct. Eng., 120(7), 2021-2040. http://refhub.elsevier.com/S0143-974X(20)30161-9/rf0100. 100
  41. Wan, C.Y. and Zha, X.X. (2013), "Experiment study of reinforced concrete filled steel tubular columns subjected to axial compression", J. Build. Struct., 34(2013S1), 259-266.
  42. Wang, Q.X., Zhao, D.Z. and Guan, P. (2004), "Experimental study on the strength and ductility of steel tubular columns filled with steel-reinforced concrete", Eng. Struct., 26(7), 907-915. https://doi.org/10.1016/j.engstruct.2004.02.009.
  43. Wei H., Wang, H.J. and Hasegawa A. (2014), "Experimental study on reinforced concrete filled circular steel tubular columns", Steel Compos. Struct., 17(4), 517-533. http://refhub.elsevier.com/S0141-0296(19)31009-0/h0035. 1009-0/h0035
  44. Xiamuxi, A. and Hasegawa, A. (2011), "Compression test of RCFT columns with thin-walled steel tube and high strength concrete", Steel Compos. Struct., 11(5), 391-402. https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE10903204. 10903204
  45. Xiamuxi, A., Hasegawa, A. and Tuohuti, A. (2014), "A study on bending strength of reinforced concrete filled steel tubular beam", Steel Compos. Struct., 16(6), 639-655. http://dx.doi.org/10.12989/scs.2014.16.6.639.
  46. Xu, S.C., Wu, C.Q., Liu, Z.X. and Shao, R.Z. (2019), "Experimental investigation on the cyclic behaviors of ultra-high-performance steel fiber reinforced concrete filled thin-walled steel tubular columns", Thin-Wall. Struct., 140, 1-20. https://doi.org/10.1016/j.tws.2019.03.008.
  47. Zhou, X.H. and Liu, J.P. (2010), "Seismic behavior and shear strength of tubed RC short columns", J. Constr. Steel Res., 66(3), 385-397. https://doi.org/10.1016/j.jcsr.2009.10.011.
  48. Zhou, Z., Gan, D., Zhou, X.H. and Tan, K.H. (2018), "Square reinforced CFST column to RC beam joint subjected to lateral loading: an investigation using finite element analysis", 12th International Conference on Advances in Steel-Concrete Composite Structures, Valencia, Spain, June.