DOI QR코드

DOI QR Code

Low-cost model for pancreatojejunostomy simulation in minimally invasive pancreatoduodenectomy

  • Hiang Jin Tan (Hepatopancreatobiliary Service, Department of Surgery, Changi General Hospital) ;
  • Adrian Kah Heng Chiow (Hepatopancreatobiliary Service, Department of Surgery, Changi General Hospital) ;
  • Lip Seng Lee (Hepatopancreatobiliary Service, Department of Surgery, Changi General Hospital) ;
  • Suyue Liao (Hepatopancreatobiliary Service, Department of Surgery, Changi General Hospital) ;
  • Ying Feng (Hepatopancreatobiliary Service, Department of Surgery, Changi General Hospital) ;
  • Nita Thiruchelvam (Hepatopancreatobiliary Service, Department of Surgery, Changi General Hospital)
  • Received : 2023.03.21
  • Accepted : 2023.05.12
  • Published : 2023.11.30

Abstract

Minimally invasive pancreatoduodenectomy (MIS PD) is a well reported technique with several advantages over conventional open pancreatoduodenectomy. In comparison to distal pancreatectomy, the adoption of MIS PD has been slow due to the technical challenges involved, particularly in the reconstruction phase of the pancreatojejunostomy (PJ) anastomosis. Hence, we introduce a lowcost model for PJ anastomosis simulation in MIS PD. We fashioned a model of a cut pancreas and limb of jejunum using economical and easily accessible materials comprising felt fabric and the modelling compound, Play-Doh. Surgeons can practice MIS PJ suturing using this model to help mount their individual learning curve for PJ creation. Our video demonstrates that this model can be utilized in simulation practice mimicking steps during live surgery. Our model is a cost-effective and easily replicable tool for surgeons looking to simulate MIS PJ creation in preparation for MIS PD.

Keywords

References

  1. Winer J, Can MF, Bartlett DL, Zeh HJ, Zureikat AH. The current state of robotic-assisted pancreatic surgery. Nat Rev Gastroenterol Hepatol 2012;9:468-476. https://doi.org/10.1038/nrgastro.2012.120
  2. Kamarajah SK, Bundred J, Marc OS, Jiao LR, Manas D, Abu Hilal M, et al. Robotic versus conventional laparoscopic pancreaticoduodenectomy a systematic review and meta-analysis. Eur J Surg Oncol 2020;46:6-14. https://doi.org/10.1016/j.ejso.2019.08.007
  3. Gagner M, Pomp A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg Endosc 1994;8:408-410. https://doi.org/10.1007/BF00642443
  4. Cho A, Yamamoto H, Nagata M, Takiguchi N, Shimada H, Kainuma O, et al. Comparison of laparoscopy-assisted and open pylorus-preserving pancreaticoduodenectomy for periampullary disease. Am J Surg 2009;198:445-449. https://doi.org/10.1016/j.amjsurg.2008.12.025
  5. Kim SC, Song KB, Jung YS, Kim YH, Park DH, Lee SS, et al. Shortterm clinical outcomes for 100 consecutive cases of laparoscopic pylorus-preserving pancreatoduodenectomy: improvement with surgical experience. Surg Endosc 2013;27:95-103. https://doi.org/10.1007/s00464-012-2427-9
  6. Pugliese R, Scandroglio I, Sansonna F, Maggioni D, Costanzi A, Citterio D, et al. Laparoscopic pancreaticoduodenectomy: a retrospective review of 19 cases. Surg Laparosc Endosc Percutan Tech 2008;18:13-18. https://doi.org/10.1097/SLE.0b013e3181581609
  7. Zeh HJ 3rd, Bartlett DL, Moser AJ. Robotic-assisted major pancreatic resection. Adv Surg 2011;45:323-340. https://doi.org/10.1016/j.yasu.2011.04.001
  8. Zureikat AH, Moser AJ, Boone BA, Bartlett DL, Zenati M, Zeh HJ 3rd. 250 robotic pancreatic resections: safety and feasibility. Ann Surg 2013;258:554-559; discussion 559-562. https://doi.org/10.1097/SLA.0b013e3182a4e87c
  9. Feng Q, Xin Z, Qiu J, Xu M. Laparoscopic vs. open pancreaticoduodenectomy after learning curve: a systematic review and meta-analysis of single-center studies. Front Surg 2021;8:715083.
  10. Fung G, Sha M, Kunduzi B, Froghi F, Rehman S, Froghi S. Learning curves in minimally invasive pancreatic surgery: a systematic review. Langenbecks Arch Surg 2022;407:2217-2232. https://doi.org/10.1007/s00423-022-02470-3
  11. Speicher PJ, Nussbaum DP, White RR, Zani S, Mosca PJ, Blazer DG 3rd, et al. Defining the learning curve for team-based laparoscopic pancreaticoduodenectomy. Ann Surg Oncol 2014;21:4014-4019. https://doi.org/10.1245/s10434-014-3839-7
  12. Zureikat AH, Postlewait LM, Liu Y, Gillespie TW, Weber SM, Abbott DE, et al. A multi-institutional comparison of perioperative outcomes of robotic and open pancreaticoduodenectomy. Ann Surg 2016;264:640-649. https://doi.org/10.1097/SLA.0000000000001869
  13. Shyr BU, Chen SC, Shyr YM, Wang SE. Learning curves for robotic pancreatic surgery-from distal pancreatectomy to pancreaticoduodenectomy. Medicine (Baltimore) 2018;97:e13000.
  14. Lee YN, Kim WY. Comparison of Blumgart versus conventional duct-to-mucosa anastomosis for pancreaticojejunostomy after pancreaticoduodenectomy. Ann Hepatobiliary Pancreat Surg 2018;22:253-260. https://doi.org/10.14701/ahbps.2018.22.3.253
  15. Wang W, Zhang Z, Gu C, Liu Q, Liang Z, He W, et al. The optimal choice for pancreatic anastomosis after pancreaticoduodenectomy: a network meta-analysis of randomized control trials. Int J Surg 2018;57:111-116. https://doi.org/10.1016/j.ijsu.2018.04.005
  16. Song KB, Kim SC, Lee W, Hwang DW, Lee JH, Kwon J, et al. Laparoscopic pancreaticoduodenectomy for periampullary tumors: lessons learned from 500 consecutive patients in a single center. Surg Endosc 2020;34:1343-1352. https://doi.org/10.1007/s00464-019-06913-9
  17. Zwart MJW, Nota CLM, de Rooij T, van Hilst J, Te Riele WW, van Santvoort HC, et al.; Dutch Pancreatic Cancer Group. Outcomes of a multicenter training program in robotic pancreatoduodenectomy (LAELAPS-3). Ann Surg 2022;276:e886-e895. https://doi.org/10.1097/SLA.0000000000004783
  18. Tjonnas MS, Das A, Vapenstad C, Ose SO. Simulation-based skills training: a qualitative interview study exploring surgical trainees' experience of stress. Adv Simul (Lond) 2022;7:33.