DOI QR코드

DOI QR Code

Effects of salinity and irradiance on early developmental stages of Grateloupia turuturu (Halymeniaceae, Rhodophyta) tetrasporophytes

  • Jae Woo Jung (Department of Marine Science, Incheon National University) ;
  • Qikun Xing (Department of Marine Science, Incheon National University) ;
  • Ji-Sook Park (Department of Marine Science, Incheon National University) ;
  • Charles Yarish (Department of Ecology & Evolutionary Biology, University of Connecticut) ;
  • Jang K. Kim (Department of Marine Science, Incheon National University)
  • Received : 2023.03.25
  • Accepted : 2023.06.02
  • Published : 2023.06.21

Abstract

Grateloupia turuturu is a red alga with a flat but firm slippery thallus. Throughout its lifetime, this alga experiences a wide range of environmental stresses in the intertidal rocky shores. The aim of this study is to investigate the effect of salinity and irradiance on the early developmental stages of G. turuturu tetrasporophytes. The released carpospores were cultivated at different salinities (S = 15, 25, and 35) and irradiances (50, 100, and 200 μmol photons m-2 s-1). Germination of carpospores and development of juvenile tetrasporophytes were observed every 5 days and recorded by a digital camera. Discoid crusts were formed at all conditions within 5 days. The discoid crusts at 200 μmol photons m-2 s-1 died within 20 days regardless the salinity. The discoid crusts at S = 35 also died at all irradiance conditions within 25 days. Except for those at S = 35 and 200 μmol photons m-2 s-1, the discoid crusts reached about 8,000-9,000 ㎛2 by day 20. Regardless of irradiance, the upright thalli formation rate from discoid crusts was 85 and 10% at S = 15 and S = 25, respectively. These results suggest that salinity and irradiance are important factors influencing early developmental stages of G. turuturu.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A1A06015181 and NRF-2022R1I1A1A01071940), and by the Ministry of Science and ICT (2022R1A2C1011394).

References

  1. Adharini, R. I. & Kim, H. G. 2014. Developmental pattern of crust into upright thalli of Grateloupia asiatica (Halymeniaceae, Rhodophyta). J. Appl. Phycol. 26:1911-1918. https://doi.org/10.1007/s10811-013-0218-x
  2. Adharini, R. I. & Kim, H. G. 2016. Growth of gametophytes and sporophytes of Grateloupia subpectinata (Rhodophyta) in culture. Ocean Sci. J. 51:477-483. https://doi.org/10.1007/s12601-016-0043-7
  3. Araujo, R., Violante, J., Pereira, R., Abreu, H., Arenas, F. & Sousa-Pinto, I. 2011. Distribution and population dynamics of the introduced seaweed Grateloupia turuturu (Halymeniaceae, Rhodophyta) along the Portuguese coast. Phycologia 50:392-402. https://doi.org/10.2216/10-65.1
  4. Bolton, J. J., De Clerck, O., Francis, C. M., Siyanga-Tembo, F. & Anderson, R. J. 2016. Two newly discovered Grateloupia (Halymeniaceae, Rhodophyta) species on aquaculture rafts on the west coast of South Africa, including the widely introduced Grateloupia turuturu. Phycologia 55:659-664. https://doi.org/10.2216/15-104.1
  5. Capistrant-Fossa, K. & Brawley, S. H. 2019. Unexpected reproductive traits of Grateloupia turuturu revealed by its resistance to bleach-based biosecurity protocols. Bot. Mar. 62:83-96. https://doi.org/10.1515/bot-2018-0104
  6. Cardoso, I., Cotas, J., Rodrigues, A., Ferreira, D., Osorio, N. & Pereira, L. 2019. Extraction and analysis of compounds with antibacterial potential from the red alga Grateloupia turuturu. J. Mar. Sci. Eng. 7:220.
  7. D'Archino, R., Nelson, W. A. & Zuccarello, G. C. 2007. Invasive marine red alga introduced to New Zealand waters: first record of Grateloupia turuturu (Halymeniaceae, Rhodophyta). N. Z. J. Mar. Freshw. Res. 41:35-42. https://doi.org/10.1080/00288330709509894
  8. de Azevedo, C. A. A., Cassano, V., Junior, P. A. H., Batista, M. B. & de Oliveira, M. C. 2015. Detecting the non-native Grateloupia turuturu (Halymeniales, Rhodophyta) in southern Brazil. Phycologia 54:451-454. https://doi.org/10.2216/15-25.1
  9. Denis, C., Morancais, M., Li, M., Deniaud, E., Gaudin, P., Wielgosz-Collin, G., Barnathan, G., Jaouen, P. & Fleurence, J. 2010. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem. 119:913-917. https://doi.org/10.1016/j.foodchem.2009.07.047
  10. Ding, Y., Bian, Y., Wang, H., Liu, J., Li, J. & Wang, H. 2020. Early development, life history and ecological habits of Grateloupia constricata Li et Ding. Acta Oceanol. Sin. 39:155-161. https://doi.org/10.1007/s13131-020-1662-5
  11. Glenn, E. P., Moore, D., Fitzsimmons, K. & Azevedo, C. 1996. Spore culture of the edible red seaweed, Gracilaria parvispora (Rhodophyta). Aquaculture 142:59-74. https://doi.org/10.1016/0044-8486(95)01249-4
  12. Harlin, M. M. & Villalard-Bohnsack, M. 2001. Seasonal dynamics and recruitment strategies of the invasive seaweed Grateloupia doryphora (Halymeniaceae, Rhodophyta) in Narragansett Bay and Rhode Island Sound, Rhode Island, USA. Phycologia 40:468-474. https://doi.org/10.2216/i0031-8884-40-5-468.1
  13. Iima, M., Kinoshita, T., Kawaguchi, S. & Migita, S. 1995. Cultivation of Grateloupia acuminata (Halymeniaceae, Rhodophyta) by regeneration from cut fragments of basal crusts and upright thalli. J. Appl. Phycol. 7:583-588. https://doi.org/10.1007/BF00003946
  14. Korpelainen, H. 2016. Comparative population genetics of red alga occupying different salinity conditions. In Hu, Z. M. & Fraser, C. (Eds.) Seaweed Phylogeography: Adaptation and Evolution of Seaweeds under Environmental Change. Springer, Dordrecht, pp. 331-344.
  15. Kraemer, G., Yarish, C., Kim, J. K., Zhang, H. & Lin, S. 2017. Life history interactions between the red algae Chondrus crispus (Gigartinales) and Grateloupia turuturu (Halymeniales) in a changing global environment. Phycologia 56:176-185. https://doi.org/10.2216/16-72.1
  16. Lafontaine, N., Mussio, I. & Rusig, A.-M. 2011. Production and regeneration of protoplasts from Grateloupia turuturu Yamada (Rhodophyta). J. Appl. Phycol. 23:17-24. https://doi.org/10.1007/s10811-010-9527-5
  17. Liu, J., Li, J., Bian, Y., Ding, Y., Wang, H. & Wang, H. 2020. The morphological, developmental and molecular landscape of Grateloupia qingdaoensis Li et Ding. J. Appl. Phycol. 32:2093-2103. https://doi.org/10.1007/s10811-020-02046-y
  18. Lordan, S., Ross, R. P. & Stanton, C. 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar. Drugs 9:1056-1100. https://doi.org/10.3390/md9061056
  19. Mantri, V. A., Thakur, M. C., Kumar, M., Reddy, C. R. K. & Jha, B. 2009. The carpospore culture of industrially important red alga Gracilaria dura (Gracilariales, Rhodophyta). Aquaculture 297:85-90. https://doi.org/10.1016/j.aquaculture.2009.09.004
  20. Ott, F. D. 1965. Synthetic media and techniques for the xenic cultivation of marine algae and flagellate. Va. J. Sci. 16:205-218.
  21. Petrocelli, A., Alabiso, G., Cecere, E., Ricci, P. & Carlucci, R. 2020. Invasive or not? The case of Grateloupia turuturu (Rhodophyta, Halymeniales) in the Northern Ionian Sea (Mediterranean Sea). Mar. Pollut. Bull. 161:111748.
  22. Plouguerne, E., Hellio, C., Deslandes, E., Veron, B. & Stiger-Pouvreau, V. 2008. Anti-microfouling activities in extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum. Bot. Mar. 51:202-208. https://doi.org/10.1515/BOT.2008.026
  23. Rodrigo, M. & Robaina, R. R. 1997. Stress tolerance of photosynthesis in sporelings of the red alga Grateloupia doryphora compared to that of Stage III thalli. Mar. Biol. 128:689-694. https://doi.org/10.1007/s002270050136
  24. Saunders, G. W. & Withall, R. D. 2006. Collections of the invasive species Grateloupia turuturu (Halymeniales, Rhodophyta) from Tasmania, Australia. Phycologia 45:711-714. https://doi.org/10.2216/06-10.1
  25. Shao, K., Wang, J. & Zhou, B. 2004. Production and application of filaments of Grateloupia turuturu (Halymeniaceae, Rhodophyta). J. Appl. Phycol. 16:431-437. https://doi.org/10.1007/s10811-004-5503-2
  26. Simon, C., Ar Gall, E. & Deslandes, E. 2001. Expansion of the red alga Grateloupia doryphora along the coasts of Brittany (France). Hydrobiologia 443:23-29. https://doi.org/10.1023/A:1017587918604
  27. Simon, C., Ar Gall, E., Levavasseur, G. & Deslandes, E. 1999. Effects of short-term variations of salinity and temperature on the photosynthetic response of the red alga Grateloupia doryphora from Brittany (France). Bot. Mar. 42:437-440.
  28. Villalard-Bohnsack, M. & Harlin, M. M. 1997. The appearance of Grateloupia doryphora (Halymeniaceae, Rhodophyta) on the northeast coast of North America. Phycologia 36:324-328. https://doi.org/10.2216/i0031-8884-36-4-324.1
  29. Villalard-Bohnsack, M. & Harlin, M. M. 2001. Grateloupia doryphora (Halymeniaceae, Rhodophyta) in Rhode Island waters (USA): geographical expansion, morphological variations and associated algae. Phycologia 40:372-380. https://doi.org/10.2216/i0031-8884-40-4-372.1
  30. Wang, G., Jiang, C., Wang, S., Wei, X. & Zhao, F. 2012. Early development of Grateloupia turuturu (Halymeniaceae, Rhodophyta). Chin. J. Oceanol. Limnol. 30:264-268. https://doi.org/10.1007/s00343-012-1071-5
  31. Wei, X., Shuai, L., Lu, B., Wang, S., Chen, J. & Wang, G. 2013. Effects of temperature and irradiance on filament development of Grateloupia turuturu (Halymeniaceae, Rhodophyta). J. Appl. Phycol. 25:1881-1886. https://doi.org/10.1007/s10811-013-0018-3
  32. Yarish, C., Edwards, P. & Casey, S. 1979. Acclimation responses to salinity of three estuarine red algae from New Jersey. Mar. Biol. 51:289-294. https://doi.org/10.1007/BF00386809
  33. Yarish, C., Edwards, P. & Casey, S. 1980. The effects of salinity, calcium and potassium variations on the growth of two estuarine red algae. J. Exp. Mar. Biol. Ecol. 47:235-249. https://doi.org/10.1016/0022-0981(80)90041-6
  34. Yu, C.-H., Lim, P.-E. & Phang, S.-M. 2013. Effects of irradiance and salinity on the growth of carpospore-derived tetrasporophytes of Gracilaria edulis and Gracilaria tenuistipitata var liui (Rhodophyta). J. Appl. Phycol. 25:787-794. https://doi.org/10.1007/s10811-012-9960-8