DOI QR코드

DOI QR Code

Geminocystis urbisnovae sp. nov. (Chroococcales, Cyanobacteria): polyphasic description complemented with a survey of the family Geminocystaceae

  • Elena Polyakova (Institute of Fundamental Medicine and Biology, Kazan Federal University) ;
  • Svetlana Averina (Department of Microbiology, St. Petersburg State University) ;
  • Alexander Pinevich (Department of Microbiology, St. Petersburg State University)
  • Received : 2023.01.08
  • Accepted : 2023.06.12
  • Published : 2023.06.21

Abstract

Progress in phylogenomic analysis has led to a considerable re-evaluation of former cyanobacterial system, with many new taxa being established at different nomenclatural levels. The family Geminocystaceae is among cyanobacterial taxa recently described on the basis of polyphasic approach. Within this family, there are six genera: Geminocystis, Cyanobacterium, Geminobacterium, Annamia, Picocyanobacterium, and Microcrocis. The genus Geminocystis previously encompassed two species: G. herdmanii and G. papuanica. Herein, a new species G. urbisnovae was proposed under the provision of the International Code of Nomenclature for algae, fungi, and plants (ICN). Polyphasic analysis was performed for five strains from the CALU culture collection (St. Petersburg State University, Russian Federation), and they were assigned to the genus Geminocystis in accordance with high 16S rRNA gene similarity to existing species, as well as because of proximity to these species on the phylogenetic trees reconstructed with RaxML and Bayes methods. Plausibility of their assignment to a separate species of the genus Geminocystis was substantiated with smaller cell size; stenohaline freshwater ecotype; capability to complementary chromatic adaptation of second type (CA2); distinct 16S rRNA gene clustering; sequences and folding of D1-D1' and B box domains of the 16S-23S internal transcribed spacer region. The second objective pursued by this communication was to provide a survey of the family Geminocystaceae. The overall assessment was that, despite attention of many researchers, this cyanobacterial family has been understudied and, especially in the case of the crucially important genus Cyanobacterium, taxonomically problematic.

Keywords

Acknowledgement

The authors thank O. Gavrilova for long-term collaboration, S. Smirnova for a supply of plankton samples, and N. Velichko for a help with transmission electron microscope. We thank St. Petersburg University Research Centers "Cultivation of Microorganisms", "Molecular and Cell Technologies", and "Chromas" for strains maintenance, analytical assistance, and genes sequencing. We especially thank the anonymous reviewers for their criticism and valuable suggestions that greatly helped us in upgrading and improvement of the manuscript.

References

  1. Andreote, A. P. D., Vaz, M. G. M. V., Genuario, D. B., Barbiero, L., Rezende-Filho, A. T. & Fiore, M. F. 2014. Nonheterocytous cyanobacteria from Brazilian saline-alkaline lakes. J. Phycol. 50:675-684. https://doi.org/10.1111/jpy.12192
  2. Averina, S., Polyakova, E., Senatskaya, E. & Pinevich, A. 2021. A new cyanobacterial genus Altericista and three species, A. lacusladogae sp. nov., A. violacea sp. nov., and A. variichlora sp. nov., described using a polyphasic approach. J. Phycol. 57:1517-1529. https://doi.org/10.1111/jpy.13188
  3. Blank, C. E. & Hinman, N. W. 2016. Cyanobacterial and algal growth on chitin as a source of nitrogen: ecological, evolutionary, and biotechnological implications. Algal Res. 15:152-163. https://doi.org/10.1016/j.algal.2016.02.014
  4. Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A. & Economou-Amilli, A. 2016. A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Mol. Phylogenet. Evol. 98:147-160. https://doi.org/10.1016/j.ympev.2016.02.009
  5. Brenes-Guillen, L., Vidaurre-Barahona, D., Morales, S., Mora-Lopez, M., Sittenfeld, A. & Uribe-Lorio, L. 2021. Novel cyanobacterial diversity found in Costa Rican thermal springs associated to Rincon de la Vieja and Miravalles volcanoes: a polyphasic approach. J. Phycol. 57:183-198. https://doi.org/10.1111/jpy.13077
  6. Brito, A., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C. P., Kastovsky, J., Vasconcelos, V. M. & Tamagnini, P. 2017. Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Mol. Phylogenet. Evol. 111:18-34. https://doi.org/10.1016/j.ympev.2017.03.006
  7. Castenholz, R. W., Wilmotte, A., Herdman, M., Rippka, R., Waterbury, J. B., Iteman, I. & Hoffmann, L. 2001. Phylum BX. Cyanobacteria. In Boone, D. R. & Castenholz, R. W. & Garrity, G. M. (Eds.) Bergey's Manual of Systematic Bacteriology. Vol. 1. 2nd ed. Springer-Verlag, NY, pp. 473-599.
  8. Deepa, G. D. 2018. Putative probiotic Cyanobacterium spp. from the coastal waters of cochin: polyphasic taxonomy, fate of axenic cultures and heterotrophic bacterial associates. Ph.D. dissertation, Cochin University of Science and Technology, Kerala, India, 170
  9. Deschamps, P., Colleoni, C., Nakamura, Y., Suzuki, E., Putaux, J. -L., Buleon, A., Haebel, S., Ritte, G., Steup, M., Falcon, L. I., Moreira, D., Loffelhardt, W., Raj, J. N., Plancke, C., d'Hulst, C., Dauvillee, D. & Ball, S. 2008. Metabolic symbiosis and the birth of the Plant Kingdom. Mol. Biol. Evol. 25:536-548. https://doi.org/10.1093/molbev/msm280
  10. Dvorak, P., Jahodarova, E., Stanojkovic, A., Skoupy, S. & Casamatta, D. A. 2023. Population genomics meets the taxonomy of cyanobacteria. Algal Res. 72:103128.
  11. Falcon, L. I., Lindvall, S., Bauer, K., Bergman, B. & Carpenter, E. J. 2004. Ultrastructure of unicellular N2 fixing cyanobacteria from the tropical North Atlantic and subtropical North Pacific oceans. J. Phycol.40:1074-1078. https://doi.org/10.1111/j.1529-8817.2004.03138.x
  12. Herdman, M., Castenholz, R. W., Iteman, I. & Rippka, R. 2001. Form-genus XIV. Synechocystis. In Boone, D. R. & Castenholz, R. W. (Eds.) Bergey's Manual of Systematic Bacteriology. Vol. 1. 2nd ed. Springer-Verlag, NY, pp. 512-514.
  13. Hirose, Y., Chihong, S., Watanabe, M., Yonekawa, C., Murata, K., Ikeuchi, M. & Eki, T. 2019. Diverse chromatic adaptation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Mol. Plant 12:715-725. https://doi.org/10.1016/j.molp.2019.02.010
  14. Hirose, Y., Katayama, M., Ohtsubo, Y., Misawa, N., Iioka, E., Suda, W., Oshima, K., Hanaoka, M., Tanaka, K., Eki, T., Ikeuchi, M., Kikuchi, Y., Ishida, M. & Hattori, M. 2015a. Complete genome sequence of cyanobacterium Geminocystis sp. strain NIES-3708, which performs type II complementary chromatic acclimation. Genome Announc. 3:e00357-15.
  15. Hirose, Y., Katayama, M., Ohtsubo, Y., Misawa, N., Iioka, E., Suda, W., Oshima, K., Hanaoka, M., Tanaka, K., Eki, T., Ikeuchi, M., Kikuchi, Y., Ishida, M. & Hattori, M. 2015b. Complete genome sequence of cyanobacterium Geminocystis sp. strain NIES-3709, which harbors a phycoerythrin-rich phycobilisome. Genome Announc. 3:e00385-15.
  16. Hirose, Y., Misawa, N., Yonekawa, C., Nagao, N., Watanabe, M., Ikeuchi, M. & Eki, T. 2017. Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria. DNA Res. 24:387-396. https://doi.org/10.1093/dnares/dsx011
  17. Hoffmann, L., Komarek, J. & Kastovsky, J. 2005. System of cyanoprokaryotes (cyanobacteria): state in 2004. Algol. Stud. 117:95-115. https://doi.org/10.1127/1864-1318/2005/0117-0095
  18. Iteman, I., Rippka, R., de Marsac, N. T. & Herdman, M. 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275-1286. https://doi.org/10.1099/00221287-146-6-1275
  19. Johansen, J. R. & Casamatta, D. A. 2005. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algol. Stud. 117:71-93. https://doi.org/10.1127/1864-1318/2005/0117-0071
  20. Johansen, J. R., Gonzalez-Resendiz, L., Escobar-Sanchez, V., Segal-Kischinevzky, C., Martinez-Yerena, J., HernandezSanchez, J., Hernandez-Perez, G. & Leon-Tejera, H. 2021. When will taxonomic saturation be achieved? A case study in Nunduva and Kyrtuthrix (Rivulariaceae, Cyanobacteria). J. Phycol. 57:1699-1720. https://doi.org/10.1111/jpy.13201
  21. Johansen, J. R., Kovacik, L., Casamatta, D. A., Fucikova, K. & Kastovsky, J. 2011. Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92:283-302. https://doi.org/10.1127/0029-5035/2011/0092-0283
  22. Kampfer, P. & Glaeser, S. P. 2012. Prokaryotic taxonomy in the sequencing era: the polyphasic approach revisited. Environ. Microbiol. 14:291-317. https://doi.org/10.1111/j.1462-2920.2011.02615.x
  23. Kim, M., Oh, H. -S., Park, S. -C. & Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64:346-351. https://doi.org/10.1099/ijs.0.059774-0
  24. Koksharova, O., Schubert, M., Shestakov, S. & Cerff, R. 1998. Genetic and biochemical evidence for distinct key functions of two highly divergent GADPH genes in catabolic and anabolic carbon flow of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 36:183-194. https://doi.org/10.1023/A:1005925732743
  25. Komarek, J., Johansen, J. R., Smarda, J. & Strunecky, O. 2020. Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea 20:171-191. https://doi.org/10.5507/fot.2020.006
  26. Komarek, J., Kastovsky, J., Mares, J. & Johansen, J. R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295-335.
  27. Korelusova, J., Kastovsky, J. & Komarek, J. 2009. Heterogeneity of the cyanobacterial genus Synechocystis and description of a new genus, Geminocystis. J. Phycol. 45:928-937. https://doi.org/10.1111/j.1529-8817.2009.00701.x
  28. Lane, D. J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. & Goodfellow, M. (Eds.) Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, pp. 115-175.
  29. Ma, S., Wang, Y., Ao, H., Yu, G., Li, S. & Li, R. 2019. A newly recorded cyanobacterial genus Geminocystis in China and its taxonomic and ecological notes. J. Lake Sci. 31:236-242. https://doi.org/10.18307/2019.0122
  30. Mares, J., Johansen, J. R., Hauer, T., Zima, J. Jr., Ventura, S., Cuzman, O., Tiribilli, B. & Kastovsky, J. 2019a. Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria. J. Phycol. 55:578-610. https://doi.org/10.1111/jpy.12853
  31. Mares, J., Strunecky, O., Bucinska, L. & Wiedermannova, J. 2019b. Evolutionary patterns of thylakoid architecture in Cyanobacteria. Front. Microbiol. 10:277.
  32. Mathews, D. H., Schroeder, S. J., Turner, D. H. & Zuker, M. 2005. Predicting RNA secondary structure. In Gesteland, R. F., Cech, T. R. & Atkins, J. F. (Eds.) The RNA World. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 631-657.
  33. Mobberley, J. M., Romine, M. F., Cole, J. K., Maezato, Y., Lindemann, S. R. & Nelson, W. C. 2018. Draft genome sequence of Cyanobacterium sp. strain HL-69, isolated from a benthic microbial mat from a magnesium sulfate-dominated hypersaline lake. Genome Announc. 6:e01583-17.
  34. Moro, I., Rascio, N., La Rocca, N., Di Bella, M. & Andreoli, C. 2007. Cyanobacterium aponinum, a new cyanoprokaryote from the microbial mat of Euganean thermal springs (Padua, Italy). Algol. Stud. 123:1-15. https://doi.org/10.1127/1864-1318/2007/0123-0001
  35. Muhlsteinova, R., Johansen, J. R., Pietrasiak, N., Martin, M. P., Osorio-Santos, K. & Warren, S. D. 2014. Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa 163:241-261. https://doi.org/10.11646/phytotaxa.163.5.1
  36. Nguyen, L. T. T., Cronberg, G., Moestrup, O. & Daugbjerg, N. 2013. Annamia toxica gen. et sp. nov. (Cyanobacteria), a freshwater cyanobacterium from Vietnam that produces microcystins: ultrastructure, toxicity and molecular phylogenetics. Phycologia 52:25-36. https://doi.org/10.2216/10-097.1
  37. Oren, A. 2020. Three alternative proposals to emend the Rules of the International Code of Nomenclature of Prokaryotes to resolve the status of the Cyanobacteria in the prokaryotic nomenclature. Int. J. Syst. Evol. Microbiol. 70:4406-4408. https://doi.org/10.1099/ijsem.0.004268
  38. Oren, A., Arahal, D. R., Rossello-Mora, R., Sutcliffe, I. C. & Moore, E. R. B. 2021. Emendation of General Consideration 5 and Rules 18a, 24a and 30 of the International Code of Nomenclature of Prokaryotes to resolve the status of the Cyanobacteria in the prokaryotic nomenclature. Int. J. Syst. Evol. Microbiol. 71:004939.
  39. Oren, A., Mares, J. & Rippka, R. 2022. Validation of the names Cyanobacterium and Cyanobacterium stanieri, and proposal of Cyanobacteriota phyl. nov. Int. J. Syst. Evol. Microbiol. 72:005528.
  40. Pinevich, A. V., Mamkaeva, K. A., Titova, N. N., Gavrilova, O. V., Ermilova, E. V., Kvitko, K. V., Pljusch, A. V., Voloshko, L. N. & Averina, S. G. 2004. St. Petersburg culture collection (CALU): four decades of storage and research with microscopic algae, cyanobacteria and other microorganisms. Nova Hedwigia 79:115-126. https://doi.org/10.1127/0029-5035/2004/0079-0115
  41. Pokorny, J., Stenklova, L. & Kastovsky, J. 2023. Unsuspected findings about phylogeny and ultrastructure of the enigmatic cyanobacterium Microcrocis geminata resulted in its epitypification and novel placement in Geminocystaceae. Fottea 23:110-121. https://doi.org/10.5507/fot.2022.016
  42. Ramos, V., Morais, J., Castelo-Branco, R., Pinheiro, A., Martins, J., Regueiras, A., Pereira, A. L., Lopes, V. R., Frazao, B., Gomes, D., Moreira, C., Costa, M. S., Brule, S., Faustino, S., Martins, R., Saker, M., Osswald, J., Leao, P. N. & Vasconcelos, V. M. 2018. Cyanobacterial diversity held in microbial biological resource centers as a biotechnological asset: the case study of the newly established LEGE Culture Collection. J. Appl. Phycol. 30:1437-1451. https://doi.org/10.1007/s10811-017-1369-y
  43. Rippka, R. & Cohen-Bazire, G. 1983. The cyanobacteriales: a legitimate order based on the type strain Cyanobacterium stanieri? Ann. Microbiol. 134:21-36. https://doi.org/10.1016/S0769-2609(83)80094-5
  44. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1-61. https://doi.org/10.1099/00221287-111-1-1
  45. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  46. Sarsekeyeva, F. K., Usserbaeva, A. A., Zayadan, B. K., Mironov, K. S., Sidorov, R. A., Kozlova, A. Y., Kupriyanova, E. V., Sinetova, M. A. & Los, D. A. 2014. Isolation and characterization of a new cyanobacterial strain with a unique fatty acid composition. Adv. Microbiol. 4:1033-1043. https://doi.org/10.4236/aim.2014.415114
  47. Silva, C. S. P., Genuario, D. B., Vaz, M. G. M. V. & Fiore, M. F. 2014. Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst. Appl. Microbiol. 37:100-112. https://doi.org/10.1016/j.syapm.2013.12.003
  48. Singh, P., Fatma, A. & Mishra, A. K. 2015. Molecular phylogeny and evogenomics of heterocystous cyanobacteria using rbcl gene sequence data. Ann. Microbiol. 65:799-807. https://doi.org/10.1007/s13213-014-0920-1
  49. Stackebrandt, E. 2006. Defining taxonomic ranks. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H. & Stackebrandt, E. (Eds.) The Prokaryotes. Springer, NY, pp. 29-57.
  50. Strunecky, O., Ivanova, A. P. & Mares, J. 2023. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 59:12-51. https://doi.org/10.1111/jpy.13304
  51. Strunecky, O., Raabova, L., Bernardova, A., Ivanova, A. P., Semanova, A., Crossley, J. & Kaftan, D. 2020. Diversity of cyanobacteria at the Alaska North Slope with description of two new genera: Gibliniella and Shackletoniella. FEMS Microbiol. Ecol. 96:fiz189.
  52. Tandeau de Marsac, N. 1977. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130:82-91. https://doi.org/10.1128/jb.130.1.82-91.1977
  53. Tuji, A., Yamaguchi, H., Kataoka, T., Sato, M., Sano, T. & Niiyama, Y. 2021. Annamia dubia sp. nov. with a description of a new family, Geminocystaceae fam. nov. (Cyanobacteria). Fottea 21:100-109. https://doi.org/10.5507/fot.2021.003
  54. Turland, N. J., Wiersma, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Kusher, W.-H., Li, D.-Z., Marhold, K., May, T. W., McNeil, J., Monro, A. M., Prado, J., Price, M. J. & Smith, G. F. 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Koeltz Botanical Books, Glashutten, 254 pp.
  55. Turner, S., Pryer, K. M., Miao, V. P. W. & Palmer, J. D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46:327-338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
  56. Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K. & Swings, J. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60:407-438. https://doi.org/10.1128/mr.60.2.407-438.1996
  57. Velichko, N. V., Timofeyeva, A. S., Gavrilova, O. V., Averina, S. G., Ivanikova, N. V. & Pinevich, A. V. 2012. Polyphasic emended description of the filamentous prochlorophyte Prochlorothrix scandica Skulberg 2008. Algol. Stud. 141:11-27. https://doi.org/10.1127/1864-1318/2012/0044
  58. Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F. O., Ludwig, W., Schleifer, K. -H., Whitman, W. B., Euzeby, J., Amann, R. & Rosello-Mora, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12:635-645. https://doi.org/10.1038/nrmicro3330
  59. Zuker, M. 2003. M-fold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406-3415. https://doi.org/10.1093/nar/gkg595