DOI QR코드

DOI QR Code

Korean Red Ginseng extract attenuates alcohol-induced addictive responses and cognitive impairments by alleviating neuroinflammation

  • Hee Jin Kim (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Min Yeong Lee (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Gyu Ri Kim (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Hyun Jun Lee (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Leandro Val Sayson (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Darlene Mae D. Ortiz (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Jae Hoon Cheong (School of Pharmacy, Jeonbuk National University) ;
  • Mikyung Kim (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University)
  • Received : 2022.06.27
  • Accepted : 2023.02.12
  • Published : 2023.07.01

Abstract

Background: Alcohol is one of the most commonly used psychoactive drugs. Due to its addictive characteristics, many people struggle with the side effects of alcohol. Korean Red Ginseng (KRG) is a traditional herbal medicine that is widely used to treat various health problems. However, the effects and mechanisms of KRG in alcohol-induced responses remain unclear. Therefore, the purpose of this study was to investigate the effects of KRG in alcohol-induced responses. Methods: We investigated two aspects: alcohol-induced addictive responses and spatial working memory impairments. To determine the effects of KRG in alcohol-induced addictive responses, we performed conditioned place preference tests and withdrawal symptom observations. To assess the effects of KRG in alcohol-induced spatial working memory impairment, Y-maze, Barnes maze, and novel object recognition tests were performed using mice after repeated alcohol and KRG exposure. To investigate the potential mechanism of KRG activity, gas chromatography-mass spectrometry and western blot analysis were performed. Results: KRG-treated mice showed dose-dependent restoration of impaired spatial working memory following repeated alcohol exposure. Furthermore, withdrawal symptoms to alcohol were reduced in mice treated with KRG and alcohol. The PKA-CREB signaling pathway was activated after alcohol administration, which was reduced by KRG. However, the levels of inflammatory cytokines were increased by alcohol and decreased by KRG. Conclusion: Taken together, KRG may alleviate alcohol-induced spatial working memory impairments and addictive responses through anti-neuroinflammatory activity rather than through the PKA-CREB signaling pathway.

Keywords

Acknowledgement

This research was supported by grants from the Korean Society of Ginseng (2021).

References

  1. McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, et al. Fermented beverages of pre- and proto-historic China. Proc Natl Acad Sci U S A 2004;101:17593-8. https://doi.org/10.1073/pnas.0407921102.
  2. Bora E, Zorlu N. Social cognition in alcohol use disorder: a meta-analysis. Addiction 2017;112:40-8. https://doi.org/10.1111/add.13486.
  3. Bartels C, Kunert HJ, Stawicki S, Kroner-Herwig B, Ehrenreich H, Krampe H. Recovery of hippocampus-related functions in chronic alcoholics during monitored long-term abstinence. Alcohol Alcohol 2007;42:92-102. https://doi.org/10.1093/alcalc/agl104.
  4. Wilhelm J, Bayerlein K, Hillemacher T, Reulbach U, Frieling H, Kromolan B, et al. Short-term cognition deficits during early alcohol withdrawal are associated with elevated plasma homocysteine levels in patients with alcoholism. J Neural Transm 2006;113:357-63. https://doi.org/10.1007/s00702-005-0333-1.
  5. Kim JW, Lee DY, Lee BC, Jung MH, Kim H, Choi YS, et al. Alcohol and cognition in the elderly: a review. Psychiatry Investig 2012;9:8-16. https://doi.org/10.4306/pi.2012.9.1.8.
  6. Treit S, Zhou D, Chudley AE, Andrew G, Rasmussen C, Nikkel SM, et al. Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PLoS One 2016;11:1-15. https://doi.org/10.1371/journal.pone.0150370.
  7. Vetreno RP, Crews FT. Binge ethanol exposure during adolescence leads to a persistent loss of neurogenesis in the dorsal and ventral hippocampus that is associated with impaired adult cognitive functioning. Front Neurosci 2015;9. https://doi.org/10.3389/fnins.2015.00035.
  8. Zhao YN, Wang F, Fan YX, Ping GF, Yang JY, Wu CF. Activated microglia are implicated in cognitive deficits, neuronal death, and successful recovery following intermittent ethanol exposure. Behav Brain Res 2013;236:270-82. https://doi.org/10.1016/j.bbr.2012.08.052.
  9. Terasaki LS, Schwarz JM. Impact of prenatal and subsequent adult alcohol exposure on pro-inflammatory cytokine expression in brain regions necessary for simple recognition memory. Brain Sci 2017;7. https://doi.org/10.3390/brainsci7100125.
  10. Pascual M, Balino P, Alfonso-Loeches S, Arag ~ on CMG, Guerri C. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 2011;25. https://doi.org/10.1016/j.bbi.2011.02.012.
  11. Yang Y, Ren C, Zhang Y, Wu XD. Ginseng: an nonnegligible natural remedy for healthy aging. Aging Dis 2017;8:708e20. https://doi.org/10.14336/AD.2017.0707.
  12. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001.
  13. Chen S, Wang Z, Huang Y, O'Barr SA, Wong RA, Yeung S, et al. Ginseng and anticancer drug combination to improve cancer chemotherapy: a critical review. Evidence-Based Complement Altern Med 2014;2014. https://doi.org/10.1155/2014/168940.
  14. Heo JH, Lee ST, Oh MJ, Park HJ, Shim JY, Chu K, et al. Improvement of cognitive deficit in Alzheimer's disease patients by long term treatment with Korean red ginseng. J Ginseng Res 2011;35:457-61. https://doi.org/10.5142/jgr.2011.35.4.457.
  15. Lee Y, Oh S. Administration of red ginseng ameliorates memory decline in aged mice. J Ginseng Res 2015;39:250-6. https://doi.org/10.1016/j.jgr.2015.01.003.
  16. Lu L, Liu Y, Zhu W, Shi J, Liu Y, Ling W, et al. Traditional medicine in the treatment of drug addiction. Am J Drug Alcohol Abuse 2009;35:1-11. https://doi.org/10.1080/00952990802455469.
  17. Lee BR, Sung SJ, Hur KH, Kim SE, Ma SX, Kim SK, et al. Korean Red Ginseng inhibits methamphetamine addictive behaviors by regulating dopaminergic and NMDAergic system in rodents. J Ginseng Res 2022;46:147-55. https://doi.org/10.1016/j.jgr.2021.05.007.
  18. Kim M, Custodio RJ, Botanas CJ, de la Pena JB, Sayson LV, Abiero A, et al. The circadian gene, Per2, influences methamphetamine sensitization and reward through the dopaminergic system in the striatum of mice. Addict Biol 2019;24:946-57. https://doi.org/10.1111/adb.12663.
  19. Kim M, James R, Hyun C, Lee J, Val L, Darlene S, et al. Per2 expression regulates the spatial working memory of mice through DRD1 - PKA. CREB Signaling 2022;1:1-12. https://doi.org/10.1007/s12035-022-02845-z.
  20. Custodio RJP, Botanas CJ, de la Pena JB, dela Pena IJ, Kim M, Sayson LV, et al. Overexpression of the thyroid hormone-responsive (THRSP) gene in the striatum leads to the development of inattentive-like phenotype in mice. Neuroscience 2018;390:141-50. https://doi.org/10.1016/j.neuroscience.2018.08.008.
  21. Sim HI, Kim DH, Kim M. Cellular messenger molecules mediating addictive drug-induced cognitive impairment: cannabinoids, ketamine, methamphetamine, and cocaine. Futur J Pharm Sci 2022;8. https://doi.org/10.1186/s43094-022-00408-6.
  22. Lwin T, Yang JL, Ngampramuan S, Viwatpinyo K, Chancharoen P, Veschsanit N, et al. Melatonin ameliorates methamphetamine-induced cognitive impairments by inhibiting neuroinflammation via suppression of the TLR4/MyD88/NFkB signaling pathway in the mouse hippocampus. Prog Neuro-Psychopharmacology Biol Psychiatry 2021;111:110109. https://doi.org/10.1016/j.pnpbp.2020.110109.
  23. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 2005;11:35-42. https://doi.org/10.1038/nm1163.
  24. Kebir O, Gorsane MA, Blecha L, Krebs MO, Reynaud M, Benyamina A. Association of inflammation genes with alcohol dependence/abuse: a systematic review and a Meta-Analysis. Eur Addict Res 2011;17:146-53. https://doi.org/10.1159/000324849.
  25. Smith I, Williamson EM, Putnam S, Farrimond J, Whalley BJ. Effects and mechanisms of ginseng and ginsenosides on cognition. Nutr Rev 2014;72:319-33. https://doi.org/10.1111/nure.12099.
  26. Han J, Oh JP, Yoo M, Cui CH, Jeon BM, Kim SC, et al. Minor ginsenoside F1 improves memory in APP/PS1 mice. Mol Brain 2019;12:4-11. https://doi.org/10.1186/s13041-019-0495-7.
  27. Fang F, Chen X, Huang T, Lue LF, Luddy JS, Yan SS Du. Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model. Biochim Biophys Acta - Mol Basis Dis 2012;1822:286-92. https://doi.org/10.1016/j.bbadis.2011.10.004.
  28. Kim EJ, Jung IH, Van Le TK, Jeong JJ, Kim NJ, Kim DH. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 2013;146:294e9. https://doi.org/10.1016/j.jep.2012.12.047.
  29. Shi YQ, Huang TW, Chen LM, Pan XD, Zhang J, Zhu YG, et al. Ginsenoside Rg1 attenuates amyloid-b content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. J Alzheimer's Dis 2010;19:977-89. https://doi.org/10.3233/JAD-2010-1296.
  30. Moonat S, Starkman BG, Sakharkar A, Pandey SC. Neuroscience of alcoholism: molecular and cellular mechanisms. Cell Mol Life Sci 2010;67:73-88. https://doi.org/10.1007/s00018-009-0135-y.
  31. Lim JR, Lee HJ, Jung YH, Kim JS, Chae CW, Kim SY, et al. Ethanol-activated CaMKII signaling induces neuronal apoptosis through Drp1-mediated excessive mitochondrial fission and JNK1-dependent NLRP3 inflammasome activation. Cell Commun Signal 2020;18:1-19. https://doi.org/10.1186/s12964-020-00572-3.
  32. Gabr AA, Lee HJ, Onphachanh X, Jung YH, Kim JS, Chae CW, et al. Ethanolinduced PGE2 up-regulates Ab production through PKA/CREB signaling pathway. Biochim Biophys Acta - Mol Basis Dis 2017;1863:2942-53. https://doi.org/10.1016/j.bbadis.2017.06.020.
  33. Wang X, Yang Z, Sun Y, Zhou H, Chu G, Zhang J, et al. Ethanol activation of PKA mediates single-minded 2 expression in neuronal cells. Mol Neurobiol 2015;52:1234-44. https://doi.org/10.1007/s12035-014-8924-1.
  34. Wang H, Jiang N, Lv J, Huang H, Liu X. Ginsenoside Rd reverses cognitive deficits by modulating BDNF-dependent CREB pathway in chronic restraint stress mice. Life Sci 2020;258:118107. https://doi.org/10.1016/j.lfs.2020.118107.
  35. Lee B, Sur B, Oh S. Neuroprotective effect of Korean Red Ginseng against single prolonged stress-induced memory impairments and inflammation in the rat brain associated with BDNF expression. J Ginseng Res 2022;46:435-43. https://doi.org/10.1016/j.jgr.2021.08.002.
  36. Tu THT, Sharma N, Shin EJ, Tran HQ, Lee YJ, Nah SY, et al. Treatment with mountain-cultivated ginseng alleviates trimethyltin-induced cognitive impairments in mice via IL-6-dependent JAK2/STAT3/ERK signaling. Planta Med 2017;83:1342-50. https://doi.org/10.1055/s-0043-111896.
  37. Xu T, Shen X, Yu H, Sun L, Lin W, Zhang C. Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent. J Ginseng Res 2016;40:211-9. https://doi.org/10.1016/j.jgr.2015.07.007.
  38. Achur RN, Freeman WM, Vrana KE. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J Neuroimmune Pharmacol 2010;5:83-91. https://doi.org/10.1007/s11481-009-9185-z.
  39. Schneider R, Bandiera S, Souza DG, Bellaver B, Caletti G, Quincozes-Santos A, et al. N-Acetylcysteine prevents alcohol related neuroinflammation in rats. Neurochem Res 2017;42:2135-41. https://doi.org/10.1007/s11064-017-2218-8.
  40. Cruz MR. Treatment of withdrawal. Pain 2019:1163-71. https://doi.org/10.1007/978-3-319-99124-5_249.
  41. Zhang J, Yao W, Hashimoto K. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 2016;14:721-31. https://doi.org/10.2174/1570159x14666160119094646.