DOI QR코드

DOI QR Code

Ginseng saponin metabolite 20(S)-protopanaxadiol relieves pulmonary fibrosis by multiple-targets signaling pathways

  • Guoqing Ren (Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Weichao Lv (Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Yue Ding (Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Lei Wang (Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • ZhengGuo Cui (Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Renshi Li (Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Jiangwei Tian (Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Chaofeng Zhang (Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University)
  • 투고 : 2022.02.05
  • 심사 : 2023.01.04
  • 발행 : 2023.07.01

초록

Background: Panax ginseng Meyer is a representative Chinese herbal medicine with antioxidant and anti-inflammatory activity. 20(S)-Protopanaxadiol (PPD) has been isolated from ginseng and shown to have promising pharmacological activities. However, effects of PDD on pulmonary fibrosis (PF) have not been reported. We hypothesize that PDD may reverse inflammation-induced PF and be a novel therapeutic strategy. Methods: Adult male C57BL/6 mice were used to establish a model of PF induced by bleomycin (BLM). The pulmonary index was measured, and histological and immunohistochemical examinations were made. Cell cultures of mouse alveolar epithelial cells were analyzed with Western blotting, coimmunoprecipitation, immunofluorescence, immunohistochemistry, siRNA transfection, cellular thermal shift assay and qRT-PCR. Results: The survival rate of PPD-treated mice was higher than that of untreated BLM-challenged mice. Expression of fibrotic hallmarks, including α-SMA, TGF-β1 and collagen I, was reduced by PPD treatment, indicating attenuation of PF. Mice exposed to BLM had higher STING levels in lung tissue, and this was reduced by phosphorylated AMPK after activation by PPD. The role of phosphorylated AMPK in suppressing STING was confirmed in TGF-b1-incubated cells. Both in vivo and in vitro analyses indicated that PPD treatment attenuated BLM-induced PF by modulating the AMPK/STING signaling pathway. Conclusion: PPD ameliorated BLM-induced PF by multi-target regulation. The current study may help develop new therapeutic strategies for preventing PF.

키워드

과제정보

We are thankful to all the authors for their dedication and patience throughout the study. The authors would like to express their gratitude to EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

참고문헌

  1. Pardo A, Selman M. Lung fibroblasts, aging, and idiopathic pulmonary fibrosis. Ann Am Thorac Soc 2016:S417-21. https://doi.org/10.1513/AnnalsATS.201605-341AW.
  2. Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol 2021. https://doi.org/10.1146/effectonannurev-pathol-042320-030240.
  3. Tao N, Li K, Liu J, Fan G, Sun T. Liproxstatin-1 alleviates bleomycin-induced alveolar epithelial cells injury and mice pulmonary fibrosis via attenuating inflammation, reshaping redox equilibrium, and suppressing ROS/p53/α-SMA pathway. Biochem Biophys Res Commun 2021;551:133-9. https://doi.org/10.1016/j.bbrc.2021.02.127.
  4. Li X, Liu X, Deng R, Gao S, Yu H, Huang K, et al. Nintedanib inhibits wnt3a-induced myofibroblast activation by suppressing the Src/b-catenin pathway. Front Pharmacol 2020;11:310. https://doi.org/10.3389/fphar.2020.00310.
  5. Liu J, Peng D, You J, Zhou O, Qiu H, Hao C, et al. Type 2 alveolar epithelial cells differentiated from human umbilical cord mesenchymal Stem cells alleviate mouse pulmonary fibrosis through b-catenin-regulated cell apoptosis. Stem Cells Dev 2021;30(13):660-70. https://doi.org/10.1089/scd.2020.0208.
  6. Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest 2017;127(2):405-14. https://doi.org/10.1172/JCI87440.
  7. Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015;88:314-36. https://doi.org/10.1016/j.freeradbiomed.2015.05.036.
  8. Bargagli E, Olivieri C, Bennett D, Prasse A, Muller-Quernheim J, Rottoli P. Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir Med 2009;103(9):1245-56. https://doi.org/10.1016/j.rmed.2009.04.014.
  9. Nishio T, Koyama Y, Liu X, Rosenthal SB, Yamamoto G, Fuji H, et al. Immunotherapy-based targeting of MSLN activated portal fibroblasts is a strategy for treatment of cholestatic liver fibrosis. Proc Natl Acad Sci U S A 2021;(29):118. https://doi.org/10.1073/pnas.2101270118.
  10. Tian M, Liu W, Zhang Q, Huang Y, Li W, Wang W, et al. MYSM1 represses innate immunity and autoimmunity through suppressing the cGAS-STING pathway. Cell Rep 2020;33(3):108297. https://doi.org/10.1016/j.celrep.2020.108297.
  11. Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 2015;18(2):157-68. https://doi.org/10.1016/j.chom.2015.07.001.
  12. Savigny F, Schricke C, Lacerda-Queiroz N, Meda M, Nascimento M, HuotMarchand S, et al. Protective role of the nucleic acid Sensor STING in pulmonary fibrosis. Front Immunol 2020;11:588799. https://doi.org/10.3389/fimmu.2020.588799.
  13. Han B, Wang X, Wu P, Jiang H, Yang Q, Li S, et al. Pulmonary inflammatory and fibrogenic response induced by graphitized multi-walled carbon nanotube involved in cGAS-STING signaling pathway. J Hazard Mater 2021;417:125984. https://doi.org/10.1016/j.jhazmat.2021.125984.
  14. Jang SS, Kim HG, Han JM, Lee JS, Choi MK, Huh GJ, et al. Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract. Phytother Res 2015;29(2):201-9. https://doi.org/10.1002/ptr.5223.
  15. Chen F, Wang PL, Fan XS, Yu JH, Zhu Y, Zhu ZH. Effect of Renshen Pingfei Decoction, a traditional Chinese prescription, on IPF induced by Bleomycin in rats and regulation of TGF-b1/Smad3. J Ethnopharmacol 2016;186:289-97. https://doi.org/10.1016/j.jep.2016.03.051.
  16. Bai Y, Li J, Zhao P, Li Y, Li M, Feng S, et al. A Chinese herbal formula ameliorates pulmonary fibrosis by inhibiting oxidative stress via upregulating Nrf2. Front Pharmacol 2018;9:628. https://doi.org/10.3389/fphar.2018.00628.
  17. Deng J, Lv XT, Wu Q, Huang XN. Ginsenoside Rg (1) inhibits rat left ventricular hypertrophy induced by abdominal aorta coarctation: involvement of calcineurin and mitogen-activated protein kinase signalings. Eur J Pharmacol 2009;608:42-7. https://doi.org/10.1016/j.ejphar.2009.01.048.
  18. Yu XF, Deng J, Yang DL, Gao Y, Gong QH, Huang XN. Total Ginsenosides suppress the neointimal hyperplasia of rat carotid artery induced by balloon injury. Vascul Pharmacol 2011;54:52-7. https://doi.org/10.1016/j.vph.2010.12.003.
  19. Liu H, Lv C, Lu J. Panax ginseng C. A. Meyer as a potential therapeutic agent for organ fibrosis disease. Chin Med 2020;15(1):124. https://doi.org/10.1186/s13020-020-00400-3.
  20. Guan S, Liu Q, Han F, Gu W, Song L, Zhang Y, Guo X, Xu W. Ginsenoside Rg1 ameliorates cigarette smoke-induced airway fibrosis by suppressing the TGF-beta1/Smad pathway in vivo and in vitro. Biomed Res Int 2017;2017:6510198.
  21. Li X, Mo N, Li ZZ. Ginsenosides: potential therapeutic source for fibrosisassociated human diseases. J Ginseng Res 2020;44(3):386-98. https:// doi.org/10.1016/j.jgr.2019.12.003.
  22. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29: 1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x.
  23. Hasegawa H, Sung JH, Benno Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med 1997;63:436-40. https://doi.org/10.1055/s-2006-957729.
  24. Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-7. https://doi.org/10.1254/jphs.fmj04001x4.
  25. Sun L, Wang Q, Liu X, Brons NH, Wang N, Steinmetz A, et al. Anti-cancer effects of 20(S)-protopanoxadiol on human acute lymphoblastic leukemia cell lines Reh and RS4;11. Med Oncol 2011;28:813-21. https://doi.org/10.1007/s12032-010-9508-1.
  26. Chen G, Yang M, Nong S, Yang X, Ling Y, Wang D, et al. Microbial transformation of 20(S)-protopanaxadiol by Absidia corymbifera. Cytotoxic activity of the metabolites against human prostate cancer cells. Fitoterapia 2013;84:6-10. https://doi.org/10.1016/j.fitote.2012.09.018.
  27. Kong LT, Wang Q, Xiao BX, Liao YH, He XX, Ye LH, et al. Different pharmacokinetics of the two structurally similar dammarane sapogenins, protopanaxatriol and protopanaxadiol, in rats. Fitoterapia 2013;86:48-53. https://doi.org/10.1016/j.fitote.2013.01.019.
  28. Yang L, Chen PP, Luo M, Shi WL, Hou DS, Gao Y, et al. Inhibitory effects of total ginsenoside on bleomycin-induced pulmonary fibrosis in mice. Biomed Pharmacother 2019;114:108851. https://doi.org/10.1016/j.biopha.2019.108851.
  29. Zhan H, Huang F, Ma W, Zhao Z, Zhang H, Zhang C. Protective effect of ginsenoside Rg1 on bleomycin-induced pulmonary fibrosis in rats: involvement of caveolin-1 and TGF-beta1 signal pathway. Biol Pharm Bull 2016;39:1284-92. https://doi.org/10.1248/bpb.b16-00046.
  30. Tao L, Yang J, Cao F, Xie H, Zhang M, Gong Y, et al. Mogroside IIIE, a novel antifibrotic compound, reduces pulmonary fibrosis through Toll like receptor 4 pathways. J Pharmacol Exp Ther 2017;361(2):268-79. https://doi.org/10.1124/jpet.116.239137.
  31. Yang JY, Tao LJ, Liu B, You XY, Zhang CF, Xie HF, Li RS. Wedelolactone attenuates pulmonary fibrosis partly through activating AMPK and regulating rafMAPKs signaling pathway. Front Pharmacol 2019;10:151. https://doi.org/10.3389/fphar.2019.00151.
  32. Szapiel SV, Elson NA, Fulmer JD, Hunninghake GW, Crystal RG. Bleomyc-ininduced interstitial pulmonary disease in the nude, athymic mouse. Am Rev Respir Dis 1979;120(4):893-9. https://doi.org/10.1164/arrd.1979.120.4.893.
  33. Seger S, Stritt M, Vezzali E, Nayler O, Hess P, Groenen PMA, et al. A fully automated image analysis method to quantify lung fibrosis in the bleomycininduced rat model. PLoS One 2018;13(3):e0193057. https://doi.org/10.1371/journal.pone.0193057.
  34. Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundback T, Nordlund P, Martinez MD. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 2014;9(9):2100-22. https://doi.org/10.1038/nprot.2014.138.
  35. Qin N, Yang W, Feng D, Wang X, Qi M, Du T, et al. Total ginsenosides suppress monocrotaline-induced pulmonary hypertension in rats: involvement of nitric oxide and mitogen-activated protein kinase pathways. J Ginseng Res 2016;40(3):285-91. https://doi.org/10.1016/j.jgr.2015.09.005.
  36. Aa JY, Wang GJ, Hao HP, Huang Q, Lu YH, Yan B, et al. Differential regulations of blood pressure and perturbed metabolism by total ginsenosides and conventional antihypertensive agents in spontaneously hypertensive rats. Acta Pharmacol Sin 2010;31(8):930-7. https://doi.org/10.1038/aps.2010.86.
  37. Hafez MM, Hamed SS, El-Khadragy MF, Hassan ZK, Al Rejaie SS, Sayed-Ahmed MM, et al. Effect of ginseng extract on the TGF-β1 signaling pathway in CCl-induced liver fibrosis in rats. BMC Complement Altern Med 2017;17(1):45. https://doi.org/10.1186/s12906-016-1507-0.
  38. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008;455(7213):674-8. https://doi.org/10.1038/nature07317.
  39. Iurescia S, Fioretti D, Rinaldi M. Targeting cytosolic nucleic acid-sensing pathways for cancer immunotherapies. Front Immunol 2018;9:711. https://doi.org/10.3389/fimmu.2018.00711.
  40. Wu JJ, Zhao L, Hu HG, Li WH, Li YM. Agonists and inhibitors of the STING pathway: potential agents for immunotherapy. Med Res Rev 2020;40(3):1117-41. https://doi.org/10.1002/med.21649.
  41. Paludan SR, Bowie AG. Immune sensing of DNA. Immunity 2013;38(5):870-80. https://doi.org/10.1016/j.immuni.2013.05.004.
  42. Baek AR, Hong J, Song KS, Jang AS, Kim DJ, Chin SS, et al. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med 2020;52(12):2034-45. https://doi.org/10.1038/s12276-020-00545-z.