References
- Chen, D., Feng, K. and Zheng, S. (2019), "Flapwise vibration analysis of rotating composite laminated Timoshenko microbeams with geometric imperfection based on a re-modified couple stress theory and isogeometric analysis", Eur. J. Mech. A/Solid., 76, 25-35. https://doi.org/10.1016/j.euromechsol.2019.03.002.
- Chen, W. and Li, X. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83, 431-444. https://doi.org/10.1007/s00419-012-0689-2.
- Chen, W. and Si, J. (2013), "A model of composite laminated beam based on the global-local theory and new modified couple-stress theory", Compos. Struct., 103, 99-107. https://doi.org/10.1016/j.compstruct.2013.03.021.
- Chen, W. and Wang, Y. (2016), "A model of composite laminated Reddy plate of the global-local theory based on new modified couple-stress theory", Mech. Adv. Mater. Struct., 23(6), 636-651. https://doi.org/10.1080/15376494.2015.1028691.
- He, D., Yang, W. and Chen, W. (2017), "A size-dependent composite laminated skew plate model based on a new modified couple stress theory", Acta Mechanica Solida Sinica, 30(1), 75-86. https://doi.org/10.1016/j.camss.2016.12.001.
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
- Li, L., Chen, W.J. and Nan, Z. (2013), "Model of composite laminated thin plate based on modified couple stress theory and buckling analysis of scale effects", Eng. Mech., 30(5), 1-7. http://doi.org/10.6052/j.issn.1000-4750.2011.11.0750.
- Mazur, O., Kurpa, L. and Awrejcewicz, J. (2020), "Vibrations and buckling of orthotropic small-scale plates with complex shape based on modified couple stress theory", Zeitschrift fur Angewandte Mathematik und Mechanik, 100(1), e202000009. http://doi.org/10.1002/zamm.202000009.
- Press, W.H., Teukolsky, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipe, Cambridge University Press.
- Si, J., Zhang, Y. and Yin, D. (2022), "Thermal scale effect analysis of enhanced Reddy's laminated composite based on new modified couple stress theory", Acta Materiae Compositae Sinica, 39(1), 424-430. http://doi.org/10.13801/j.cnki.fhclxb.20210301.003.
- Yang, S. and Chen, W. (2015), "On hypotheses of composite laminated plates based on new modified couple stress theory", Compos. Struct., 133, 46-53. https://doi.org/10.1016/j.compstruct.2015.07.050.
- Yang, Z. and He, D. (2017), "Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory", Results Phys., 7, 3778-3787. https://doi.org/10.1016/j.rinp.2017.09.026.
- Yang, Z. and He, D. (2019), "A microstructure-dependent plate model for orthotropic functionally graded micro-plates", Mech. Adv. Mater. Struct., 26(14), 1218-1225. https://doi.org/10.1080/15376494.2018.1432794.
- Yang, Z. and He, D. (2019), "Vibration and buckling of functionally graded sandwich micro-plates based on a new size-dependent model", Int. J. Appl Mech., 11(01), 1950004. https://doi.org/10.1142/S1758825119500042.
- Youssef, H.M. (2011), "Theory of two-temperature thermoelasticity without energy dissipation", J. Therm. Stress., 34, 138-146. https://doi.org/10.1080/01495739.2010.511941.
- Zhang, R., Bai, H. and Chen, X. (2022), "The consistent couple stress theory-based vibration and post-buckling analysis of bi-directional functionally graded microbeam", Symmetry, 14, 602. https://doi.org/10.3390/sym14030602.
- Zhou, S., Zhang, R., Li, A., Qiao, J. and Zhou, S. (2022), "Analysis of transversely isotropic piezoelectric bilayered rectangular micro-plate based on couple stress piezoelectric theory", Eur. J. Mech. A/Solid., 96, 104707. https://doi.org/10.1016/j.euromechsol.2022.104707.