DOI QR코드

DOI QR Code

On the effect of porosity on the shear correction factors of functionally graded porous beams

  • Ben Abdallah Medjdoubi (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Mohammed Sid Ahmed Houari (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Mohamed Sadoun (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Aicha Bessaim (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Ahmed Amine Daikh (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Mohamed-Ouejdi Belarbi (Laboratoire de Recherche en Genie Civil, LRGC, Universite de Biskra) ;
  • Abdelhak Khechai (Laboratoire de Recherche en Genie Civil, LRGC, Universite de Biskra) ;
  • Aman Garg (Department of Civil and Environmental Engineering, The NorthCap University) ;
  • Mofareh Hassan Ghazwani (Department of Mechanical Engineering, Jazan University)
  • Received : 2022.10.12
  • Accepted : 2023.05.04
  • Published : 2023.06.25

Abstract

This article presents a new analytical model to study the effect of porosity on the shear correction factors (SCFs) of functionally graded porous beams (FGPB). For this analysis, uneven and logarithmic-uneven porosity functions are adopted to be distributed through the thickness of the FGP beams. Critical to the application of this theory is a determination of the correction factor, which appears as a coefficient in the expression for the transverse shear stress resultant; to compensate for the assumption that the shear strain is uniform through the depth of the cross-section. Using the energy equivalence principle, a general expression is derived from the static SCFs in FGPB. The resulting expression is consistent with the variationally derived results of Reissner's analysis when the latter are reduced from the two-dimensional case (plate) to the one-dimensional one (beam). A convenient algebraic form of the solution is presented and new study cases are given to illustrate the applicability of the present formulation. Numerical results are presented to illustrate the effect of the porosity distribution on the (SCFs) for various FGPBs. Further, the law of changing the mechanical properties of FG beams without porosity and the SCFare numerically validated by comparison with some available results.

Keywords

References

  1. Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. http://doi.org/10.1016/j.apm.2021.03.008.
  2. Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021b), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. http://doi.org/10.1016/j.apm.2021.03.008.
  3. Abrate, S. (2006), "Free vibration, buckling, and static deflections of functionally graded plates", Compos. Sci. Technol., 66, 2383-2394. http://doi.org/10.1016/j.compscitech.2006.02.032.
  4. Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
  5. Bert, C.W. (1973), "Simplified analysis of static shear factors for beams of nonhomogeneous cross-section", J. Compos. Mater., 7, 525. http://doi.org/10.1177/002199837300700410.
  6. Bert, C.W. and Gordaninejad, F. (1983), "Transverse shear effects in bimodular composite laminates", J. Compos. Mater., 17, 282. http://doi.org/10.1007/978-3-642-58092-5_11.
  7. Berthelot, J.M. (1992), Materiaux Composites, Comportement Mecanique et Analyse des Structures, Masson, Paris.
  8. Bever; M.B. and Duwez, P.F. (1972), "Gradients in composite materials", Mater. Sci. Eng., 10, 1-8. https://doi.org/10.1016/0025-5416(72)90059-6.
  9. Birman, V. and Bert, C.W. (2002), "On the choice of shear correction factor in sandwich structures", J. Sandw. Struct. Mater., 4, 83. https://doi.org/10.1177/1099636202004001180.
  10. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. http://doi.org/10.1016/j.compstruct.2015.07.052.
  11. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. B Eng., 160, 661-676. http://doi.org/10.1016/j.compositesb.2018.12.020.
  12. Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299, 720-738. http://doi.org/10.1016/j.jsv.2006.06.068.
  13. Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Finite Elem. Anal. Des., 66, 26-35. http://doi.org/10.1016/j.finel.2012.11.005.
  14. Esen, I. (2015), "A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory", Lat. Am. J. Solid. Struct., 12, 808-830. http://doi.org/10.1590/1679-78251525.
  15. Esen, I. (2019), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. http://doi.org/10.1016/j.ijmecsci.2019.01.033.
  16. Esen, I. (2020), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads. Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
  17. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
  18. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17(3), 721-742. http://doi.org/10.1007/s10999-021-09555-9.
  19. Esen, I., Koc, M.A. and Cay, Y. (2018), "Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial effects of the mass", Lat. Am. J. Solid. Struct., 15(10), 1. http://doi.org/10.1590/1679-78255102.
  20. Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75, 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018.
  21. Gao, W., Qin, Z. and Chu, F. (2020), "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aerosp. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.
  22. Goetzel, C.G. and Lavendel, H.W. (1964), "Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method", Int. J. Solid. Struct., 32, 149-162. https://doi.org/10.1016/0020-7683(94)00097-G.
  23. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  24. Jalali, M.H., Zargar, O. and Baghani, M. (2019), "Size-dependent vibration analysis of fg microbeams in thermal environment based on modified couple stress theory", Iran. J. Sci. Technol.-Trans. Mech. Eng., 43(s1), 761-771. http://doi.org/10.1007/s40997-018-0193-6.
  25. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28, 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  26. Liu, Y., Qin, Z. and Chu, F. (2021a), "Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1: 1 internal resonance", Appl. Math. Mech., 42(6), 805-818. https://doi.org/10.1007/s10483-021-2740-7.
  27. Liu, Y., Qin, Z. and Chu, F. (2021b), "Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate", Nonlin. Dyn., 104, 1007-1021. https://doi.org/10.1007/s11071-021-06358-7.
  28. Liu, Y., Qin, Z. and Chu, F. (2022), "Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core", Mech. Adv. Mater. Struct., 29(9), 1338-1347. https://doi.org/10.1080/15376494.2020.1818904.
  29. Madabhusi-Raman, P. and Davalos, J.F. (1996), "Static shear correction factor for laminated rectangular beams", Compos. Part B: Eng., 27, 285-293. https://doi.org/10.1016/1359-8368(95)00014-3.
  30. Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. and Bedia, A. (2012), "Analytical solutions for static shear correction factor of functionally graded rectangular beams", Mech. Adv. Mater. Struct., 19, 641-652. https://doi.org/10.1080/15376494.2011.581409.
  31. Mortensen, A. and Suresh, S. (1998), Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behaviour of Graded Metals and Metal-ceramic Composites, Maney Publishing.
  32. Mouaici, F., Benyoucef, S., Ait Atmane, H. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory", Wind Struct., 22(4), 429-454. https://doi.org/10.12989/was.2016.22.4.429.
  33. Nguyen, T.K., Sab, K. and Bonnet, G. (2006), "Reissner-Mindlin model for functionally graded materials", Proc. of 3th European conf on Computational Mechanics, Lisbon, 6-2006.
  34. Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83, 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004.
  35. Noor A.K. and W.S. Burton. (1990), "Assessment of computational models for multilayered anisotropic plates", Compos. Struct., 14, 233-265. https://doi.org/10.1016/0263-8223(90)90050-O.
  36. Noor, A.K. and Burton, W.S. (1989), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42, 1-13. https://doi.org/10.1115/1.3152418.
  37. Noor, A.K. and Burton, W.S. (1989), "Stress and free vibration analyses of multilayered composite plates", Compos. Struct., 11, 183-204. http://doi.org/10.1016/0263-8223(89)90058-5.
  38. Noor, A.K., Burton, W.S. and Peters, J.M. (1990), "Predictor-corrector procedure for stress and free vibration analyses of multilayered composite plates and shells", Comput. Mech. Appl. Mech. Eng., 82, 341-364. https://doi.org/10.1016/0045-7825(90)90171-H.
  39. Qin, Z., Pang, X., Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
  40. Qin, Z., Zhao, S., Pang, X., Safaei, B. and Chu, F. (2020), "A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions", Int. J. Mech. Sci., 170, 105341. https://doi.org/10.1016/j.ijmecsci.2019.105341.
  41. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, Wiley, New York.
  42. Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. http://doi.org/10.1016/j.compstruct.2015.08.125.
  43. Rezaei, A.S. and Saidi, A.R. (2016), "Application of carrera unified formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates", Compos. B Eng., 91, 361-370. http://doi.org/10.1016/j.compositesb.2015.12.050.
  44. Rezaei, A.S. and Saidi, A.R. (2017), "Buckling response of moderately thick fluid-infiltrated porous annular sector plates", Acta Mechanica, 228, 3929-3945. http://doi.org/10.1007/s00707-017-1908-2.
  45. Rezaei, A.S. and Saidi, A.R. (2017), "On the effect of coupled solid-fluid deformation on natural frequencies of fluid saturated porousplates", Eur. J. Mech. Solid., 63, 99-109. http://doi.org/10.1016/j.euromechsol.2016.12.006.
  46. Sadoun, M., Houari, M.S.A., Bakora, A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "Vibration analysis of thinck orthotropic plates using quasi 3D sinusoidal shear deformation theory", Geomech. Eng., 16(2), 141-150. https://doi.org/10.12989/gae.2018.16.2.141.
  47. Sadoune, M., Tounsi, A. and Houari, M.S.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-331. https://doi.org/10.12989/scs.2014.17.3.1321.
  48. Safaei, B., Moradi-Dastjerdi, R., Behdinan, K., Qin, Z. and Chu, F. (2019), "Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers", Compos. Struct., 226, 111209. http://doi.org/10.1016/j.compstruct.2019.111209.
  49. Saidi, H. and Sahla, M. (2019), "Vibration analysis of functionally graded plates with porosity composed of a mixture of Aluminum (Al) and Alumina (Al2O3) embedded in an elastic medium", Frattura ed Integrita Strutturale, 50, 286-299. http://doi.org/10.3221/IGF-ESIS.50.24.
  50. Selmi, A. (2021), "Vibration behavior of bi-dimensional functionally graded beams", Struct. Eng. Mech., 77(5), 587-599. https://doi.org/10.12989/sem.2021.77.5.587.
  51. Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018), "On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7.
  52. Singh, S.J. and Harsha, S.P. (2020), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method, a semi analytical approach", Thin Wall. Struct., 150, 106668. http://doi.org/10.1016/j. tws.2020.106668.
  53. Slimane, M., Samir, B., Hakima, B. and Adda, H.M. (2019), "Free vibration analysis of functionally", Int. J. Eng. Tech. Res., 8(03), 143. http://doi.org/10.17577/IJERTV8IS030098.
  54. Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross section", Philos. Mag., 43, 125-131. https://doi.org/10.1080/14786442208633855.
  55. Tran, T.T., Van Ke Tran, V.K., Pham, Q.H. and Zenkour, A.M. (2021), "Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation", Compos. Struct., 264, 2-3. https://doi.org/10.1016/j.compstruct.113737.
  56. Vlachoutsis, S. (1992), "Shear correction factors for plates and shells", Int. J. Numer. Meth. Eng., 33, 1537-1552. https://doi.org/10.1002/nme.1620330712.
  57. Wang, Y.Q. and Zu, J.W. (2017), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin Wall. Struct., 119, 911-924. http://doi.org/10.1016/j.tws.08.012.
  58. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  59. Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech., 40, 302-1973. https://doi.org/10.1115/1.3422950
  60. Whitney, J.M., Browning, C.E. and Mair, A. (1974), "Analysis of the flexure test for laminated composite materials", Composite Materials: Testing and Design (Third Conference), ASTM STP, 546, 30.
  61. Yas, M.H. and Rahimi, S. (2020), "Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using generalized differential quadrature method", Aerosp Sci Technol., 107, 106261. https://doi.org/10.1016/j.ast.2020.106261.
  62. Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. http://doi.org/10.1016/j.compstruct.05.147.
  63. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.