References
- Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. http://doi.org/10.1016/j.apm.2021.03.008.
- Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021b), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. http://doi.org/10.1016/j.apm.2021.03.008.
- Abrate, S. (2006), "Free vibration, buckling, and static deflections of functionally graded plates", Compos. Sci. Technol., 66, 2383-2394. http://doi.org/10.1016/j.compscitech.2006.02.032.
- Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
- Bert, C.W. (1973), "Simplified analysis of static shear factors for beams of nonhomogeneous cross-section", J. Compos. Mater., 7, 525. http://doi.org/10.1177/002199837300700410.
- Bert, C.W. and Gordaninejad, F. (1983), "Transverse shear effects in bimodular composite laminates", J. Compos. Mater., 17, 282. http://doi.org/10.1007/978-3-642-58092-5_11.
- Berthelot, J.M. (1992), Materiaux Composites, Comportement Mecanique et Analyse des Structures, Masson, Paris.
- Bever; M.B. and Duwez, P.F. (1972), "Gradients in composite materials", Mater. Sci. Eng., 10, 1-8. https://doi.org/10.1016/0025-5416(72)90059-6.
- Birman, V. and Bert, C.W. (2002), "On the choice of shear correction factor in sandwich structures", J. Sandw. Struct. Mater., 4, 83. https://doi.org/10.1177/1099636202004001180.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. http://doi.org/10.1016/j.compstruct.2015.07.052.
- Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. B Eng., 160, 661-676. http://doi.org/10.1016/j.compositesb.2018.12.020.
- Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299, 720-738. http://doi.org/10.1016/j.jsv.2006.06.068.
- Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Finite Elem. Anal. Des., 66, 26-35. http://doi.org/10.1016/j.finel.2012.11.005.
- Esen, I. (2015), "A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory", Lat. Am. J. Solid. Struct., 12, 808-830. http://doi.org/10.1590/1679-78251525.
- Esen, I. (2019), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. http://doi.org/10.1016/j.ijmecsci.2019.01.033.
- Esen, I. (2020), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads. Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17(3), 721-742. http://doi.org/10.1007/s10999-021-09555-9.
- Esen, I., Koc, M.A. and Cay, Y. (2018), "Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial effects of the mass", Lat. Am. J. Solid. Struct., 15(10), 1. http://doi.org/10.1590/1679-78255102.
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75, 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018.
- Gao, W., Qin, Z. and Chu, F. (2020), "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aerosp. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.
- Goetzel, C.G. and Lavendel, H.W. (1964), "Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method", Int. J. Solid. Struct., 32, 149-162. https://doi.org/10.1016/0020-7683(94)00097-G.
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Jalali, M.H., Zargar, O. and Baghani, M. (2019), "Size-dependent vibration analysis of fg microbeams in thermal environment based on modified couple stress theory", Iran. J. Sci. Technol.-Trans. Mech. Eng., 43(s1), 761-771. http://doi.org/10.1007/s40997-018-0193-6.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28, 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Liu, Y., Qin, Z. and Chu, F. (2021a), "Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1: 1 internal resonance", Appl. Math. Mech., 42(6), 805-818. https://doi.org/10.1007/s10483-021-2740-7.
- Liu, Y., Qin, Z. and Chu, F. (2021b), "Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate", Nonlin. Dyn., 104, 1007-1021. https://doi.org/10.1007/s11071-021-06358-7.
- Liu, Y., Qin, Z. and Chu, F. (2022), "Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core", Mech. Adv. Mater. Struct., 29(9), 1338-1347. https://doi.org/10.1080/15376494.2020.1818904.
- Madabhusi-Raman, P. and Davalos, J.F. (1996), "Static shear correction factor for laminated rectangular beams", Compos. Part B: Eng., 27, 285-293. https://doi.org/10.1016/1359-8368(95)00014-3.
- Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. and Bedia, A. (2012), "Analytical solutions for static shear correction factor of functionally graded rectangular beams", Mech. Adv. Mater. Struct., 19, 641-652. https://doi.org/10.1080/15376494.2011.581409.
- Mortensen, A. and Suresh, S. (1998), Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behaviour of Graded Metals and Metal-ceramic Composites, Maney Publishing.
- Mouaici, F., Benyoucef, S., Ait Atmane, H. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory", Wind Struct., 22(4), 429-454. https://doi.org/10.12989/was.2016.22.4.429.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2006), "Reissner-Mindlin model for functionally graded materials", Proc. of 3th European conf on Computational Mechanics, Lisbon, 6-2006.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83, 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004.
- Noor A.K. and W.S. Burton. (1990), "Assessment of computational models for multilayered anisotropic plates", Compos. Struct., 14, 233-265. https://doi.org/10.1016/0263-8223(90)90050-O.
- Noor, A.K. and Burton, W.S. (1989), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42, 1-13. https://doi.org/10.1115/1.3152418.
- Noor, A.K. and Burton, W.S. (1989), "Stress and free vibration analyses of multilayered composite plates", Compos. Struct., 11, 183-204. http://doi.org/10.1016/0263-8223(89)90058-5.
- Noor, A.K., Burton, W.S. and Peters, J.M. (1990), "Predictor-corrector procedure for stress and free vibration analyses of multilayered composite plates and shells", Comput. Mech. Appl. Mech. Eng., 82, 341-364. https://doi.org/10.1016/0045-7825(90)90171-H.
- Qin, Z., Pang, X., Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
- Qin, Z., Zhao, S., Pang, X., Safaei, B. and Chu, F. (2020), "A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions", Int. J. Mech. Sci., 170, 105341. https://doi.org/10.1016/j.ijmecsci.2019.105341.
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, Wiley, New York.
- Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. http://doi.org/10.1016/j.compstruct.2015.08.125.
- Rezaei, A.S. and Saidi, A.R. (2016), "Application of carrera unified formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates", Compos. B Eng., 91, 361-370. http://doi.org/10.1016/j.compositesb.2015.12.050.
- Rezaei, A.S. and Saidi, A.R. (2017), "Buckling response of moderately thick fluid-infiltrated porous annular sector plates", Acta Mechanica, 228, 3929-3945. http://doi.org/10.1007/s00707-017-1908-2.
- Rezaei, A.S. and Saidi, A.R. (2017), "On the effect of coupled solid-fluid deformation on natural frequencies of fluid saturated porousplates", Eur. J. Mech. Solid., 63, 99-109. http://doi.org/10.1016/j.euromechsol.2016.12.006.
- Sadoun, M., Houari, M.S.A., Bakora, A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "Vibration analysis of thinck orthotropic plates using quasi 3D sinusoidal shear deformation theory", Geomech. Eng., 16(2), 141-150. https://doi.org/10.12989/gae.2018.16.2.141.
- Sadoune, M., Tounsi, A. and Houari, M.S.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-331. https://doi.org/10.12989/scs.2014.17.3.1321.
- Safaei, B., Moradi-Dastjerdi, R., Behdinan, K., Qin, Z. and Chu, F. (2019), "Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers", Compos. Struct., 226, 111209. http://doi.org/10.1016/j.compstruct.2019.111209.
- Saidi, H. and Sahla, M. (2019), "Vibration analysis of functionally graded plates with porosity composed of a mixture of Aluminum (Al) and Alumina (Al2O3) embedded in an elastic medium", Frattura ed Integrita Strutturale, 50, 286-299. http://doi.org/10.3221/IGF-ESIS.50.24.
- Selmi, A. (2021), "Vibration behavior of bi-dimensional functionally graded beams", Struct. Eng. Mech., 77(5), 587-599. https://doi.org/10.12989/sem.2021.77.5.587.
- Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018), "On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7.
- Singh, S.J. and Harsha, S.P. (2020), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method, a semi analytical approach", Thin Wall. Struct., 150, 106668. http://doi.org/10.1016/j. tws.2020.106668.
- Slimane, M., Samir, B., Hakima, B. and Adda, H.M. (2019), "Free vibration analysis of functionally", Int. J. Eng. Tech. Res., 8(03), 143. http://doi.org/10.17577/IJERTV8IS030098.
- Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross section", Philos. Mag., 43, 125-131. https://doi.org/10.1080/14786442208633855.
- Tran, T.T., Van Ke Tran, V.K., Pham, Q.H. and Zenkour, A.M. (2021), "Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation", Compos. Struct., 264, 2-3. https://doi.org/10.1016/j.compstruct.113737.
- Vlachoutsis, S. (1992), "Shear correction factors for plates and shells", Int. J. Numer. Meth. Eng., 33, 1537-1552. https://doi.org/10.1002/nme.1620330712.
- Wang, Y.Q. and Zu, J.W. (2017), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin Wall. Struct., 119, 911-924. http://doi.org/10.1016/j.tws.08.012.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech., 40, 302-1973. https://doi.org/10.1115/1.3422950
- Whitney, J.M., Browning, C.E. and Mair, A. (1974), "Analysis of the flexure test for laminated composite materials", Composite Materials: Testing and Design (Third Conference), ASTM STP, 546, 30.
- Yas, M.H. and Rahimi, S. (2020), "Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using generalized differential quadrature method", Aerosp Sci Technol., 107, 106261. https://doi.org/10.1016/j.ast.2020.106261.
- Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. http://doi.org/10.1016/j.compstruct.05.147.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.