DOI QR코드

DOI QR Code

Measurement of Airborne Particles and Volatile Organic Compounds Produced During the Heat Treatment Process in Manufacturing Welding Materials

  • Myoungho Lee (Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University) ;
  • Sungyo Jung (Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University) ;
  • Geonho Do (Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University) ;
  • Yeram Yang (Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University) ;
  • Jongsu Kim (Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University) ;
  • Chungsik Yoon (Institute of Health and Environment, Graduate School of Public Health, Seoul National University)
  • 투고 : 2022.09.04
  • 심사 : 2023.03.06
  • 발행 : 2023.06.30

초록

Background: There is little information about the airborne hazardous agents released during the heat treatment when manufacturing a welding material. This study aimed to evaluate the airborne hazardous agents generated at welding material manufacturing sites through area sampling. Methods: concentration of airborne particles was measured using a scanning mobility particle sizer and optical particle sizer. Total suspended particles (TSP) and respirable dust samples were collected on polyvinyl chloride filters and weighed to measure the mass concentrations. Volatile organic compounds and heavy metals were analyzed using a gas chromatography mass spectrometer and inductively coupled plasma mass spectrometer, respectively. Results: The average mass concentration of TSP was 683.1±677.4 ㎍/m3, with respirable dust accounting for 38.6% of the TSP. The average concentration of the airborne particles less than 10 ㎛ in diameter was 11.2-22.8×104 particles/cm3, and the average number of the particles with a diameter of 10-100 nm was approximately 78-86% of the total measured particles (<10 ㎛). In the case of volatile organic compounds, the heat treatment process concentration was significantly higher (p < 0.05) during combustion than during cooling. The airborne heavy metal concentrations differed depending on the materials used for heat treatment. The content of heavy metals in the airborne particles was approximately 32.6%. Conclusions: Nanoparticle exposure increased as the number of particles in the air around the heat treatment process increases, and the ratio of heavy metals in dust generated after the heat treatment process is high, which may adversely affect workers' health.

키워드

과제정보

The authors gratefully appreciate the financial support from the NRF & Ministry of Science and ICT, Republic of Korea (No. 2020R1A2C1007309) and the Ministry of Education & Republic of Korea Research Foundation (BK21 FOUR A0461-20220100).

참고문헌

  1. Kim SH. Analysis methodology of industrial integration by spatial unit: based on root industry. J Korea Contents Assoc 2020;20(6):256-66. https://doi.org/10.5392/JKCA.2009.9.6.256
  2. Bruno E, Helena P. Wood modification by heat treatment: a review. Bio Resour 2009;4(1):370-404. https://doi.org/10.15376/biores.4.1.Esteves
  3. Lynn FB, Li Z, Freborg AM. Modeling heat treatment of steel parts. Comput Mater Sci 2005;34(3):274-81.
  4. Fatih H, Huseyin U. Effect of heat treatment on microstructure, mechanical properties and fracture behaviour of ship and dual phase steels. J Iron Steel Res Int 2011;18(8):65-72. https://doi.org/10.1016/S1006-706X(11)60106-4
  5. Popescu G, Moldovan P, Bojin D, Sillekens WH. Influence of heat treatment on magnesium alloys meant to automotive industry. University Politehnica of Bucharest Scientific Bulletin B Chem Mater Sci 2009;71(2):85.
  6. Korea Occupational Safety Health Agency (KOSHA). Risk assessment model by industry. Heat Treat Plan 2022:1e34.
  7. Son MJ. Chapter 6. Surface treatment by heat treatment. J Heat Treat Eng 2021;34(3):137-43.
  8. Kunlanan K, Jason S, Rose A. Hydrothermally synthesized titanate nanostructures: impact of heat treatment on particle characteristics and photocatalytic properties. ACS Appl Mater Interfaces 2011;3(10):3988-96. https://doi.org/10.1021/am2008568
  9. Biju KP, Jain MK. Effect of crystallization on humidity sensing properties of solegel derived nanocrystalline TiO2 thin films. Thin Solid Films 2008;516(8):2175-80. https://doi.org/10.1016/j.tsf.2007.06.147
  10. Arier uOA, Tepehan FZ. Influence of heat treatment on the particle size of nanobrookite TiO2 thin films produced by solegel method. Surf Coat Technol 2011;206(1):37-42. https://doi.org/10.1016/j.surfcoat.2011.06.039
  11. Geslain E, Rogeon P, Cretteur L, Merdji Y. Effect of heat treatment on weldability of AlSi coated hot-stamped Usibor 1500P. Surf Coat Technol 2022;445:128750.
  12. Sebaie OE, Samuel AM, Samuel FH, Doty HW. The effects of mischmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319. 1, A356. 2 and A413. 1 Al-Si casting alloys. Mater Sci Eng A Struct Mater Prop Microstruct Process 2008;480(1-2):342-55. https://doi.org/10.1016/j.msea.2007.07.039
  13. Yu MH, Tsunoda H. Environmental toxicology: biological and health effects of pollutants2. CRC press; 2004. p. 30-83.
  14. Hayes RB. The carcinogenicity of metals in humans. Cancer Causes Control 1997;8(3):371-85. https://doi.org/10.1023/A:1018457305212
  15. Hengstler JG, Bolm-Audorff U, Faldum A, Jansses K, Reifenrath M, Gotte W, Jung D, Mayer-Popken O, Fuchs J, Gebhard S, Bienfait HG, Schlink K, Dietrich C, Faust D, Epe B, Oesch F. Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 2003;24(1):63-73. https://doi.org/10.1093/carcin/24.1.63
  16. Chafic K, Dyck PJB. Toxic neuropathies. In: Seminars in neurology. Thieme Medical Publisher; 2015. p. 448-57.
  17. Zeng X, Xu X, Zheng X, Reponen T, Chen A, Huo X. Heavy metals in PM2. 5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area. Environ Pollut 2016;210:346-53. https://doi.org/10.1016/j.envpol.2016.01.025
  18. Menezes MABC, Maia EP, Filho S, Albinati C. Assessment of occupational exposure and contamination. J Radioanal Nuclear Chem 2022;254(3):499-507.
  19. Park JD. Heavy metal poisoning. Hanyang Med Rev 2010;30(4):319-25. https://doi.org/10.7599/hmr.2010.30.4.319
  20. National Institute for Occupational Safety and Health (NIOSH). Manual of Analytical Methods (NMAM). Particulates not otherwise regulated, total, 0500. Cincinnati: NIOSH; 1994.
  21. National Institute for Occupational Safety and Health (NIOSH). Manual of Analytical Methods (NMAM). Particulates not otherwise regulated, respirable, 0600. Cincinnati: NIOSH; 1994.
  22. National Institute for Occupational Safety and Health (NIOSH). Manual of Analytical Methods (NMAM). Elements by ICP (microwave digestion). Cincinnati: NIOSH; 2014. 7304
  23. Pelucchi C, Negri E, Gallus S, Boffetta P, Tramacere I, La Vecchia C. Long-term particulate matter exposure and mortality: a review of European epidemiological studies. BMC Public Health 2009;9(1):1-8. https://doi.org/10.1186/1471-2458-9-1
  24. International Commission on Radiological Protection (ICRP). Human respiratory tract model for radiological protection66. ICRP Publication; 1994. p. 1-3.
  25. Guerreiro C, Gomes JF, Carvalho P, Santos TJG, Miranda RM, Albuquerque P. Characterization of airborne particles generated from metal active gas welding process. Inhal Toxicol 2014;26(6):345-52. https://doi.org/10.3109/08958378.2014.897400
  26. Bau S, Rousset D, Payet R, Keller FX. Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles. J Occup Environ Hyg 2020;17(2-3):59-72. https://doi.org/10.1080/15459624.2019.1696969
  27. Moroni B, Viti C, Cappelletti D. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries. J Expo Sci Environ Epidemiol 2014;24(1):42e50.
  28. Antabak A, Haluzan D, Chouehne A, Mance M, Fuchs N, Prlic I, Beslic I, Klaic ZB. Klaic ZB.Analysis of airborne dust as a result of plaster cast sawing. Acta Clin Croat 2017;56(4):600-8. https://doi.org/10.20471/acc.2017.56.04.04
  29. Franck U, Odeh S, Wiedensohler A, Wehner B, Herbarth O. The effect of particle size on cardiovascular disorders-the smaller the worse. Sci Total Environ 2011;409(20):4217-21. https://doi.org/10.1016/j.scitotenv.2011.05.049
  30. Abbate C, Giorgianni C, Munao F, Brecciaroli R. Neurotoxicity induced by exposure to toluene. Int Arch Occup Environ Health 1993;64(6):389-92. https://doi.org/10.1007/BF00517943
  31. Aksoy M. Malignancies due to occupational exposure to benzene. Am J Ind Med 1985;7(5-6):395-402. https://doi.org/10.1002/ajim.4700070506
  32. Abplanalp W, DeJarnett N, Riggs DW, Conklin DJ, McCracken JP, Srivastava S, Xie Z, Rai S, Bhatnagar A, O'Toole TE. Benzene exposure is associated with cardiovascular disease risk. PLoS One 2017;12(9):e0183602.
  33. Cabrera WE, Schrooten I. Broe MED. Strontium and bone. J Bone Miner Res 1999;14(5):661-8. https://doi.org/10.1359/jbmr.1999.14.5.661
  34. Ye J, Wang S, Leonard SS, Sun Y, Butterworth L, Antonini J, Ding M, Rojanasakul Y, Vallyathan V, Castranova V, Shi X. Role of reactive oxygen species and p53 in chromium (VI)-induced apoptosis. J Biol Chem 1999;274(49):34974-80. https://doi.org/10.1074/jbc.274.49.34974
  35. Chang LW, Laszlo M, Tsuguyoshi S. In: Toxicology of metals. Boca Raton, FL: CRC press; 1996: 337-423.
  36. Song Y, Zhang J, Yu S, Wang T, Cui X, Du X, Jia G. Effects of chronic chromium (vi) exposure on blood element homeostasis: an epidemiological study. Metallomics 2012;4(5):463-72. https://doi.org/10.1039/c2mt20051a