DOI QR코드

DOI QR Code

Strategies to Assess Occupational Exposure to Airborne Nanoparticles: Systematic Review and Recommendations

  • Received : 2022.07.15
  • Accepted : 2023.02.21
  • Published : 2023.06.30

Abstract

In many industrial sectors, workers are exposed to manufactured or unintentionally emitted airborne nanoparticles (NPs). To develop prevention and enhance knowledge surrounding exposure, it has become crucial to achieve a consensus on how to assess exposure to airborne NPs by inhalation in the workplace. Here, we review the literature presenting recommendations on assessing occupational exposure to NPs. The 23 distinct strategies retained were analyzed in terms of the following points: target NPs, objectives, steps, "measurement strategy" (instruments, physicochemical analysis, and data processing), "contextual information" presented, and "work activity" analysis. The robustness (consistency of information) and practical aspects (detailed methodology) of each strategy were estimated. The objectives and methodological steps varied, as did the measurement techniques. Strategies were essentially based on NPs measurement, but improvements could be made to better account for "contextual information" and "work activity". Based on this review, recommendations for an operational strategy were formulated, integrating the work activity with the measurement to provide a more complete assessment of situations leading to airborne NP exposure. These recommendations can be used with the objective of producing homogeneous exposure data for epidemiological purposes and to help improve prevention strategies.

Keywords

Acknowledgement

The research presented in this article was funded by the ANSES PNR EST [grant number 2014/1/162], Aquitaine Region [grant number 2015-1R30504], INERIS (Prog. 190), and INRS.

References

  1. ISO TS 12901-1: Nanotechnologies-occupational risk management applied to engineered nano-materials. Part 1: Principles and approaches. Geneva: International Organization for Standardization; 2012.
  2. Ljunggren SA, Karlsson H, Stahlbom B, Krapi B, Fornander L, Karlsson LE, Bergstrom B, Nordenberg E, Ervik TK, Graff P. Biomonitoring of metal exposure during additive manufacturing (3D printing). Saf Health Work 2019;10(4):518-26. https://doi.org/10.1016/j.shaw.2019.07.006
  3. Du Preez S, Johnson A, LeBouf RF, Linde SJL, Stefaniak AB, Du Plessis J. Exposures during industrial 3-D printing and post-processing tasks. Rapid Prototyp J 2018;24(5):865-71. https://doi.org/10.1108/RPJ-03-2017-0050
  4. Viitanen AK, Uuksulainen S, Koivisto AJ, Hameri K, Kauppinen T. Workplace measurements of ultrafine particlesda literature review. Ann Work Expo Health 2017;61(7):749-58. https://doi.org/10.1093/annweh/wxx049
  5. Vandebroek E, Haufroid V, Smolders E, Hons L, Nemery B. Occupational exposure to metals in shooting ranges: a biomonitoring study. Saf Health Work 2019;10(1):87-94. https://doi.org/10.1016/j.shaw.2018.05.006
  6. Bakand S, Hayes A. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci 2016;17(6).
  7. Presume M, Simon-Deckers A, Tomkiewicz-Raulet C, Grand BL, Nhieu JTV, Beaune G, Duruphty O, Doucet J, Coumoul X, Pairon JC, Boczkowski J, Lanone S, Andujar P. Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology 2016;10(10):1535-44. https://doi.org/10.1080/17435390.2016.1242797
  8. Pietroiusti A, Stockmann-Juvala H, Lucaroni F, Savolainen K. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10(5):e1513.
  9. Nicolosi A, Cardoit L, Pasquereau P, Jaillet C, Thoby-Brisson M, Juvin L, Morin D. Acute exposure to zinc oxide nanoparticles critically disrupts operation of the respiratory neural network in neonatal rat. Neurotoxicology 2018;67:150-60. https://doi.org/10.1016/j.neuro.2018.05.006
  10. Schulte PA, Leso V, Niang M, Iavicoli I. Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand J Work Environ Health 2019;45(3):217-38. https://doi.org/10.5271/sjweh.3800
  11. Guseva Canu I, Fraize-Frontier S, Michel C, Charles S. Weight of epidemiological evidence for titanium dioxide risk assessment: current state and further needs. J Expo Sci Environ Epidemiol 2019;30(3):430-5. https://doi.org/10.1038/s41370-019-0161-2
  12. Audignon-Durand S, Gramond C, Ducamp S, Manangama G, Garrigou A, Delva F, Brochard P, Lacourt A. Development of a job-exposure matrix for ultrafine particle exposure: the MatPUF JEM. Ann Work Expo Health 2021;65(5):516-27. https://doi.org/10.1093/annweh/wxaa126
  13. Brouwer D, Berges M, Virji MA, Fransman W, Bello D, Hodson L, Gabriel S, Tielemans E. Harmonization of measurement strategies for exposure to manufactured nano-objects; report of a workshop. Ann Occup Hyg 2012;56(1):1-9.
  14. OECD. Harmonized tiered approach to measure ad assess the potential exposure to airborne emissions of engineered nano-objects and their agglomerates and aggregates at workplaces. ENV/JM/MONO(2015)19; 2015 (No. 55).
  15. CEN. pr EN 17058 - Workplace exposure - assessment of inhalation exposure to nano-objects and their agglomerates and aggregates. CEN; 2018.
  16. Galey L, Audignon-Durand S, Brochard P, Debia M, Lacourt A, Lambert P, Le Bihan O, Martinon L, Pasquereau P, Witschger O, Garrigou A. Towards an operational exposure assessment strategy to airborne nanoparticles by integrating work activity analysis and exposure measurement. Arch Mal Prof Environ 2020;81(6):838-50.
  17. Daniellou F. The French-speaking ergonomists' approach to work activity: cross-influences of field intervention and conceptual models. Theor Issues Ergon Sci 2005;6(5):409-27. https://doi.org/10.1080/14639220500078252
  18. Garrigou A, Baldi I, Le Frious P, Anselm R, Vallier M. Ergonomics contribution to chemical risks prevention: an ergotoxicological investigation of the effectiveness of coverall against plant pest risk in viticulture. Appl Ergon 2011;42(2):321-30. https://doi.org/10.1016/j.apergo.2010.08.001
  19. Yang X, Haugen S, Li Y. Risk influence frameworks for activity-related risk analysis during operation: a literature review. Saf Sci 2017;96:102-16. https://doi.org/10.1016/j.ssci.2017.03.018
  20. Rosen G, Andersson IM, Walsh PT, Clark RDR, Saamanen A, Heinonen K, Riipinen H, Paakkonen R. A review of video exposure monitoring as an occupational hygiene tool. Ann Occup Hyg 2005;49(3):201-17.
  21. Beurskens-Comuth PAWV, Verbist K, Brouwer D. Video exposure monitoring as part of a strategy to assess exposure to nanoparticles. Ann Occup Hyg 2011;55(8):937-45.
  22. Judon N, Galey L, Saint Dizier de Almeida V, Garrigou A. Contributions of participatory ergonomics to the involvement of workers in chemical risk prevention projects. Work 2019;64(3):651-60. https://doi.org/10.3233/WOR-193001
  23. Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000097.
  24. EN 481. EN 481 - Atmospheres des lieux de travail - Definition des fractions de taille pour le mesurage des particules en suspension dans l'air. AFNOR; 1993.
  25. Tielemans E, Schneider T, Goede H, Tischer M, Warren N, Kromhout H, Van Tongeren M, Van Hemmen J, Cherrie JW. Conceptual model for assessment of inhalation exposure: defining modifying factors. Ann Occup Hyg 2008;52(7):577-86.
  26. Schneider T, Brouwer DH, Koponen IK, Jensen KA, Fransman W, Van DuurenStuurman B, Van Tongeren M, Tielemans E. Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Expo Sci Environ Epidemiol 2011;21(5):450e63.
  27. Woskie SR, Bello D, Virji MA, Stefaniak AB. Understanding workplace processes and factors that influence exposures to engineered nanomaterials. Int J Occup Environ Health 2010;16(4):365-77. https://doi.org/10.1179/oeh.2010.16.4.365
  28. Debia M, Bakhiyi B, Ostiguy C, Verbeek JH, Brouwer DH, Murashov V. A systematic review of reported exposure to engineered nanomaterials. Ann Occup Hyg 2016:mew041.
  29. Dul J, Bruder R, Buckle P, Carayon P, Falzon P, Marras WS, Wilson JR, Van der Doelen B. A strategy for human factors/ergonomics: developing the discipline and profession. Ergonomics 2012;55(4):377-95. https://doi.org/10.1080/00140139.2012.661087
  30. Xia N, Lam W, Tin P, Yoon S, Zhang N, Zhang W, Ma K, Fielding R. Patterns of cancer-related risk behaviors among construction workers in Hong Kong: a latent class analysis approach. Saf Health Work 2020;11(1):26-32. https://doi.org/10.1016/j.shaw.2019.12.009
  31. Malakoutikhah M, Jahangiri M, Alimohammadlou M, Faghihi SA, Kamalinia M. The factors affecting unsafe behaviors of Iranian workers: a qualitative study based on grounded theory. Saf Health Work 2021;12(3):339e45.
  32. Papakostopoulos V, Nathanael D. The complex interrelationship of work-related factors underlying risky driving behavior of food delivery riders in Athens, Greece. Saf Health Work 2021;12(2):147-53. https://doi.org/10.1016/j.shaw.2020.10.006
  33. ISO. ISO TR 27628 - Workplace atmospheres - ultrafine, nanoparticle and nano-structured aerosols - inhalation exposure characterization and assessment. ISO; 2007.
  34. ISO TR 12885. ISO TR 12885 - Nanotechnologies - health and safety practices in occupational settings relevant to nanotechnologies. ISO; 2018.
  35. BSI Committee Reference N. BSI 6699-3 Nanotechnologies. Part 3: Guide to assessing airborne exposure in occupational settings relevant to nanomaterials. BSI; 2010.
  36. NIOSH. Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials. NIOSH; 2009. Report No.: 2009-125.
  37. Methner M, Hodson L, Geraci C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials-part A. J Occup Environ Hyg 2010;7(3):127-32. https://doi.org/10.1080/15459620903476355
  38. NIOSH. Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide. NIOSH; 2011. Report No.: 2011-160.
  39. BAuA, BG RCI, IFA, IUTA, TUD, VCI. Tiered approach to an exposure measurement and assessment of nanoscale aerosols released from engineered nanomaterials in workplace operations; 2011.
  40. Witschger O, Le Bihan O, Reynier M, Durand C, Marchetto A, Zimmermann E, Charpentier D. Preconisations en matiere de caracterisation des potentiels d'emission et d'exposition professionnelle aux aerosols lors d'operations mettant en oeuvre des nanomateriaux. ND 2355; 2012 (226).
  41. NIOSH. Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. NIOSH; 2013. Report No.: 2013-145.
  42. Ostiguy C, Debia M, Roberge B, Dufresne A. Nanomateriaux - Guide de bonnes pratiques favorisant la gestion des risques en milieu de travail. 2nd ed. IRSST; 2014. Report No.: R 840.
  43. Eastlake AC, Beaucham C, Martinez KF, Dahm MM, Sparks C, Hodson LL, Geraci CL. Refinement of the nanoparticle emission assessment technique into the nanomaterial exposure assessment technique (NEAT 2.0). J Occup Environ Hyg 2016;13(9):708-17.
  44. Debia M, L'Esperance G, Catto C, Plamondon P, Dufresne A, Ostiguy C. Evaluation de methodes de prelevement et de caracterisation de nanomateriaux manufactures dans l'air et sur des surfaces des milieux de travail. IRSST; 2017. Report No.: R 952.
  45. Brouwer DH, Gijsbers JHJ, Lurvink MWM. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Ann Occup Hyg 2004;48(5):439-53.
  46. Lee JH, Lee JY, Yu IJ. Developing Korean standard for nanomaterial exposure assessment. Toxicol Res 2011;27(2):53-60. https://doi.org/10.5487/TR.2011.27.2.053
  47. Ramachandran G, Ostraat M, Evans DE, Methner MM, O'Shaughnessy P, D'Arcy J, Geraci CL, Stevenson E, Maynard A, Rickabaugh K. A strategy for assessing workplace exposures to nanomaterials. J Occup Environ Hyg 2011;8(11):673-85. https://doi.org/10.1080/15459624.2011.623223
  48. Bekker C, Kuijpers E, Brouwer DH, Vermeulen R, Fransman W. Occupational exposure to nano-objects and their agglomerates and aggregates across various life cycle stages; a broad-scale exposure study. Ann Occup Hyg 2015: mev023.
  49. Peters TM, Ramachandran G, Park JY, Raynor PC. Chapter 2 - Assessing and managing exposures to nanomaterials in the workplace. In: Ramachandran G, editor. Assessing nanoparticle risks to human health. 2nd ed. Oxford: William Andrew Publishing; 2016. p. 21-44.
  50. Bressot C, Shandilya N, Jayabalan T, Fayet G, Voetz M, Meunier L, Le Bihan O, Aguerre-Chariol O, Morgeneyer M. Exposure assessment of Nanomaterials at production sites by a Short Time Sampling (STS) approach: strategy and first results of measurement campaigns. Process Saf Environ Prot 2018;116:324-32. https://doi.org/10.1016/j.psep.2018.02.012
  51. NEDO, RISS, AIST, TASC. Guide to measuring airborne carbon nanotubes in workplaces; 2013.
  52. Brouwer D, Boessen R, van Duuren-Stuurman B, Bard D, Moehlmann C, Bekker C, Fransman W, Entink M. Evaluation of decision rules in a tiered assessment of inhalation exposure to nanomaterials. Ann Occup Hyg 2016;60(8):949-59. https://doi.org/10.1093/annhyg/mew045
  53. Boccuni F, Gagliardi D, Ferrante R, Rondinone BM, Iavicoli S. Measurement techniques of exposure to nanomaterials in the workplace for low- and medium-income countries: a systematic review. Int J Hyg Environ Health 2017;220(7):1089-97. https://doi.org/10.1016/j.ijheh.2017.06.003
  54. ISO. ISO/TS 27687 Nanotechnologies - Terminology and definitions for nano-objects - nanoparticle, nanofibre and nanoplate. ISO; 2008.
  55. Ham S, Lee N, Eom I, Lee B, Tsai PJ, Lee K, Yoon C. Comparison of real time nanoparticle monitoring instruments in the workplaces. Saf Health Work 2016;7(4):381-8. https://doi.org/10.1016/j.shaw.2016.08.001
  56. Daniellou F, Simard M, Boissieres I. Human and organizational factors of safety: state of the art [Internet]. Foundation for an Industrial Safety Culture. Toulouse: FonCSI; 2011. 123 p (Cahiers de la Securite Industrielle).
  57. Zartarian V, Bahadori T, McKone T. Adoption of an official ISEA glossary. J Expo Sci Environ Epidemiol 2004;15(1):1-5.
  58. Brouwer D, van Duuren-Stuurman B, Berges M, Jankowska E, Bard D, Mark D. From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res 2009;11(8):1867-81. https://doi.org/10.1007/s11051-009-9772-1
  59. Galey L, Audignon S, Witschger O, Bau S, Judon N, Lacourt A, Garrigou A. What does ergonomics have to do with nanotechnologies? A case study. Appl Ergon 2020;87:103116.
  60. Kuhlbusch TA, Asbach C, Fissan H, Gohler D, Stintz M. Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 2011;8:22.
  61. ICRP. Human Respiratory Tract Model for Radiological Protection; 1994. Report No.: ICRP Publication 66. Ann. ICRP 24.
  62. ISO CD 13138. Workplace atmospheres - sampling conventions for airborne particle deposition in the human respiratory system. TC 146/SC 2/WG 1. ISO; 2012.