참고문헌
- Abdoun, T. and Dobry, R. (2002), "Evaluation of pile foundation response to lateral spreading", Soil Dyn. Earthq. Eng., 22(9-12), 1051-1058. https://doi.org/10.1016/S0267-7261(02)00130-6.
- Al Ghanim, A.A., Shafiqu, Q.S.M. and Ibraheem, A.T. (2019), "Finite element analysis of the geogrid-pile foundation system under earthquake loading", Al-Nahrain J. Eng. Sci., 22(3), 202-207. https://doi.org/10.29194/NJES.22030202.
- Al-Jeznawi, D., Jais, I.M. and Albusoda, B.S. (2022a), "The effect of model scale, acceleration history, and soil condition on closed-ended pipe pile response under coupled static-dynamic loads", Int. J. Appl. Sci. Eng., 19(2), 1-21. https://doi.org/10.6703/IJASE.202206_19(2).007.
- Al-Jeznawi, D., Jais, I.M., Albusoda, B.S., Alzabeebee, S., Keawsawasvong, S. and Khalid, N. (2023), "Numerical study of the seismic response of closed-ended pipe pile in cohesionless soils", Transp. Infrastruct. Geotechnol., 2023, 1-27. https://doi.org/10.1007/s40515-022-00273-z.
- Al-Jeznawi, D., Mohamed Jais, I.B., Albusoda, B.S. and Khalid, N. (2022b), "The slenderness ratio effect on the response of closed-end pipe piles in liquefied and non-liquefied soil layers under coupled static-seismic loading", J. Mech. Behav. Mater., 31(1), 83-89. https://doi.org/10.1515/jmbm-2022-0009.
- Al-Jeznawi, D., Mohamed Jais, I.B., Albusoda, B.S. and Khalid, N. (2022c), "Numerical modeling of single closed and open-ended pipe pile embedded in dry soil layers under coupled static and dynamic loadings", J. Mech. Behav. Mater., 31(1), 587-594. https://doi.org/10.1515/jmbm-2022-0055.
- Al-Neami, M.A. (2020), "A laboratory study on the influence of anisotropy on the soil behavior", Int. Rev. Civil Eng. (IRECE), 11(1), 1. https://doi.org/10.15866/irece.v11i1.17305.
- Alzabeebee, S. (2022), "A comparative study of the effect of the soil constitutive model on the seismic response of buried concrete pipes", J. Pipeline Sci. Eng., 2(1), 87-96. https://doi.org/10.1016/j.jpse.2021.07.001.
- Asaadi, A. and Sharifipour, M. (2015), "Numerical simulation of liquefaction susceptibility of soil interacting by single pile", Int. J. Min. Geo-Eng., 49(1), 47-56.
- ASTM Committee D-18 on Soil and Rock (1999), Subcommittee D18. 02 on Sampling and Related Field Testing for Soil Investigations, Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils, American Society for Testing and Materials, West Conshohocken, PA, USA.
- Beaty, M.H. and Byrne, P.M. (2011), UBCSAND Constitutive Model Version 904aR, Itasca UDM Web Site, 69.
- Beaty, M. and Perlea, V. (2012), "Effect on ground motion characteristics on liquefying sand dams", GeoCongress, Oakland, CA, USA, March.
- Bhattacharya, S. (2014), "Safety assessment of piled buildings in liquefiable soils: Mathematical tools", Encycl. Earthq. Eng., 2014, 1-16. https://doi.org/10.1007/978-3-642-361975-5_232-1.
- Brandenberg, S.J., Zhao, M., Boulanger, R.W. and Wilson, D.W. (2013), "P-y plasticity model for non-linear dynamic analysis of piles in liquefiable soil", J. Geotech. Geoenviron. Eng., 139(8), 1262-1274. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000847.
- Chen, P.C., Kek, M.K., Hu, Y.W. and Lai, C.T. (2018), "Statistical reference values for control performance assessment of seismic shake table testing", Earthq. Struct., 15(6), 595-603. https://doi.org/10.12989/eas.2018.15.6.595.
- Das, B.M. and Sobhan, K. (2013), Principles of Geotechnical Engineering, 8th Edition, Cengage Learning Inc., Boston, MA, USA.
- Desai, C.S., Zaman, M.M., Lightner, J.G. and Siriwardane, H.J. (1984), "Thin-layer element for interfaces and joints", Int. J. Numer. Anal. Method. Geomech., 8(1), 19-43. https://doi.org/10.1002/nag.1610080103.
- Ebeido, A., Elgamal, A., Tokimatsu, K. and Abe, A. (2019), "Pile and pile-group response to liquefaction-induced lateral spreading in four large-scale shake-table experiments", J. Geotech. Geoenviron. Eng., 145(10), 04019080. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002142.
- Ecemis, N. (2013), "Simulation of seismic liquefaction: 1-g model testing system and shaking table tests", Eur. J. Environ. Civil Eng., 17(10), 899-919. https://doi.org/10.1080/19648189.2013.833140.
- Fansuri, M.H., Chang, M., Saputra, P.D., Purwanti, N., Laksmi, A.A., Harahap, S. and Puspitasari, S.D. (2022), "Effects of various factors on behaviors of piles and foundation soils due to seismic shaking", Solid Earth Sci., 7(4), 252-267, https://doi.org/10.1016/j.sesci.2022.09.001.
- Forcellini, D. and Tessari, A. (2022), "Numerical assessment of the loading factors affecting liquefaction-induced failure", Geosci., 12(3), 123. https://doi.org/10.3390/geosciences12030123.
- Galavi, V., Petalas, A. and Brinkgreve, R.B. (2013), "Finite element modelling of seismic liquefaction in soils", Geotech. Eng. J. SEAGS & AGSSEA, 44(3), 2013.
- Ghiasi, V. and Eskandari, S. (2023), ''Comparing a single pile's axial bearing capacity using numerical modeling and analytical techniques'', Result. Eng., 17, 100893, https://doi.org/10.1016/j.rineng.2023.100893.
- Giannakou, A., Gerolymos, N., Gazetas, G., Tazoh, T. and Anastasopoulos, I. (2010), "Seismic behavior of batter piles: Elastic response", J. Geotech. Geoenviron. Eng., 136(9), 1187-1199. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000337.
- Hardin, B.O. (1978), "The nature of stress-strain behaviour of soils, earthquake engineering and soil dynamics", Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, Pasadena, CA, USA, June.
- Hokmabadi, A.S., Fatahi, B., Tabatabaiefar, S.H.R. and Samali, B. (2012), "Effects of soil-pile-structure interaction on seismic response of moment resisting buildings on soft soil", 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Nicosia, North Cyprus, June.
- Hussein, A.F. and El Naggar, M.H. (2022), ''Seismic helical pile response in nonliquefiable and liquefiable soil", Int. J. Geomech., 22(7), 04022094. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002378.
- Hussein, A.F. and El Naggar, M.H. (2021), "Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils", Soil Dyn. Earthq. Eng., 149, 106853. https://doi.org/10.1016/j.soildyn.2021.106853.
- Hussein, R. (2021), "Experimental and numerical modeling of piles under combined loading in liquefied sandy soil with improvement by nanomaterials", Thesis, University of Baghdad, Baghdad, Iraq.
- Janalizadeh, A. and Zahmatkesh, A. (2015), "Lateral response of pile foundations in liquefiable soils", J. Rock Mech. Geotech. Eng., 7(5), 532-539. https://doi.org/10.1016/j.jrmge.2015.05.001.
- Khan, F.Z., Ahmad, M.E. and Ahmad, N. (2021), "Shake table testing of confined adobe masonry structures", Earthq. Struct., 20(2), 149-160. https://doi: 10.12989/eas.2021.20.2.149.
- Liyanapathirana, D.S. and Poulos, H.G. (2005), "Pseudostatic approach for seismic analysis of piles in liquefying soil", J. Geotech. Geoenviron. Eng., 131(12), 1480-1487. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1480).
- Maheshwari, B.K., Truman, K.Z., El Naggar, M.H. and Gould, P.L. (2004), "Three-dimensional non-linear analysis for seismic soil-pile-structure interaction", Soil Dyn. Earthq. Eng., 24(4), 343-356. https://doi.org/10.1016/j.soildyn.2004.01.001.
- Mahmood, M.R., Al-Helo, K.H. and AL-harbawee, A.M. (2018), "Laboratory study of plug length development and bearing capacity of pipe pile models embedded within partially saturated cohesionless soils", Advances in Analysis and Design of Deep Foundations: Proceedings of the 1st GeoMEast International Congress and Exhibition Egypt 2017 on Sustainable Civil Infrastructures, Sharm El-Sheikh, Egypt, July.
- Mase, L.Z. (2020), "Seismic hazard vulnerability of Bengkulu City, Indonesia, based on deterministic seismic hazard analysis", Geotech. Geol. Eng., 38, 5433-5455. https://doi.org/10.1007/s10706-020-01375-6.
- Mase, L.Z., Sugianto, N. and Refrizon, R. (2021), "Seismic hazard microzonation of Bengkulu City, Indonesia", Geoenviron. Disasters, 8, 1-17. https://doi.org/10.1186/s40677-021-00178-y.
- Mase, L.Z., Tanapalungkorn, W., Likitlersuang, S., Ueda, K. and Tobita, T. (2022), "Liquefaction analysis of Izumio sands under variation of ground motions during strong earthquake in Osaka", Japan Soil. Found., 62(5), 101218. https://doi.org/10.1016/j.sandf.2022.101218.
- Martin, G.R. and Chen, C.Y. (2005), "Response of piles due to lateral slope movement", Comput. Struct., 83(8-9), 588-598. https://doi.org/10.1016/j.compstruc.2004.11.006.
- Makra, A. (2013), "Evaluation of the UBC3D-PLM constitutive model for prediction of earthquake induced liquefaction on embankment dams", Master Thesis, Delft University of Technology, Delft, The Netherlands.
- Negussey, D. (1984), "An experimental study of the small strain response of sand statewide agricultural land use baseline", Doctoral Dissertation, University of British Columbia, Vancouver, BC, Canada.
- Qodri, M.F., Mase, L.Z. and Likitlersuang, S. (2021), "Non-linear site response analysis of Bangkok subsoils due to earthquakes triggered by three pagodas fault", Eng. J., 25(1), 43-52. https://doi.org/10.4186/ej.2021.25.1.43
- Paz, M. (1994), International Handbook of Earthquake Engineering, Springer New York, NY, USA.
- Phanikanth, V.S., Choudhury, D. and Reddy, G.R. (2013), "Behavior of single pile in liquefied deposits during earthquakes", Int. J. Geomech., 13(4), 454-462. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000224.
- Sharifi, B., Nouri, G. and Ghanbari, A. (2020), "Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses", Earthq. Struct., 18(6), 667-675. https://doi.org/10.12989/eas.2020.18.6.667.
- Stewart, J.P., Comartin, C. and Moehle, J.P. (2004), "Implementation of soil-structure interaction models in performance-based design procedures", 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, August.
- Tabesh, A. and Poulos, H.G. (2001), "Pseudostatic approach for seismic analysis of single piles", J. Geotech. Geoenviron. Eng., 127(9), 757-765. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(757).
- Tang, L., Zhang, X., Ling, X., Li, H. and Ju, N. (2016), "Experimental and numerical investigation on the dynamic response of pile group in liquefying ground", Earthq. Eng. Eng. Vib., 15(1), 103-114. https://doi.org/10.1007/s11803-016-0308-2.
- Tolun, M., Emirler, B., Yildiz, A. and Gullu, H. (2020) "Dynamic response of a single pile embedded in sand including the effect of resonance", Period. Polytech. Civil Eng., 64(4), 1038-1050. https://doi.org/10.3311/PPci.15027.
- Winde, H.P. (2015), "Finite element modelling for earthquake loads on dykes", Master Thesis, Delft Univrsity of Technology, Delft, The Netherlands.
- Wood, D. (2004), Geotechnical Modelling, CRC Press, Boca Raton, FL, USA.
- Yang, X., Zhang, Y., Liu, H., Fan, X., Jiang, G., El Naggar, M.H., Wu, W. and Liu, X. (2022) ''Analytical solution for lateral dynamic response of pile foundation embedded in unsaturated soil'', Ocean Eng., 265, 112518. https://doi.org/10.1016/j.oceaneng.2022.112518.
- Zhang, Y., Chen, X., Zhang, X., Ding, M., Wang, Y. and Liu, Z. (2020), "Nonlinear response of the pile group foundation for lateral loads using pushover analysis", Earthq. Struct., 19(4), 273-286. https://doi: 10.12989/eas.2020.19.4.273.