DOI QR코드

DOI QR Code

Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters

  • Duaa Al-Jeznawi (Department of Civil Engineering, College of Engineering, Al-Nahrain University) ;
  • Jitendra Khatti (Department of Civil Engineering, Rajasthan Technical University) ;
  • Musab Aied Qissab Al-Janabi (Department of Civil Engineering, College of Engineering, Al-Nahrain University) ;
  • Kamaldeep Singh Grover (Department of Civil Engineering, Rajasthan Technical University) ;
  • Ismacahyadi Bagus Mohamed Jais (Institute for Infrastructure Engineering and Sustainable Management, School of Civil Engineering, College of Engineering, Universiti Teknologi MARA) ;
  • Bushra S Albusoda (Department of Civil Engineering, University of Baghdad) ;
  • Norazlan Khalid (School of Civil Engineering, College of Engineering, Universiti Teknologi MARA Shah Alam)
  • Received : 2023.03.08
  • Accepted : 2023.05.30
  • Published : 2023.06.25

Abstract

The present study investigates the non-linear soil-pile interaction using three-dimensional (3D) non-linear finite element models. The numerical models were validated by using the results of extensive pile load and shaking table tests. The pile performance in liquefiable and non-liquefiable soil has been studied by analyzing the liquefaction ratio, pile lateral displacement (LD), pile bending moment (BM), and frictional resistance (FR) results. The pile models have been developed for the different ground conditions. The study reveals that the results obtained during the pile load test and shaking cycles have good agreement with the predicted pile and soil response. The soil density, peak ground acceleration (PGA), slenderness ratio (L/D), and soil condition (i.e., dry and saturated) are considered during modeling. Four ground motions are used for the non-linear time history analyses. Consequently, design charts are proposed depended on the analysis results to be used for design practice. Eleven models have been used to validate the capability of these charts to capture the soil-pile response under different seismic intensities. The results of the present study demonstrate that L/D ratio slightly affects the lateral displacement when compared with other parameters. Also, it has been observed that the increasing in PGA and decreasing L/D decreases the excess pore water pressure ratio; i.e., increasing PGA from 0.1 g to 0.82 g of loose sand model, decrease the liquefaction ratio by about 50%, and increasing L/D from 15 to 75 of the similar models (under Kobe earthquake), increase this ratio by about 30%. This study reveals that the lateral displacement increases nonlinearly under both dry and saturated conditions as the PGA increases. Similarly, it is observed that the BM increases under both dry and saturated states as the L/D ratio increases. Regarding the acceleration histories, the pile BM was reduced by reducing the acceleration intensity. Hence, the pile BM decreased to about 31% when the applied ground motion switched from Kobe (PGA=0.82 g) to Ali Algharbi (PGA=0.10 g). This study reveals that the soil conditions affect the relationship pattern between the FR and the PGA. Also, this research could be helpful in understanding the threat of earthquakes in different ground characteristics.

Keywords

References

  1. Abdoun, T. and Dobry, R. (2002), "Evaluation of pile foundation response to lateral spreading", Soil Dyn. Earthq. Eng., 22(9-12), 1051-1058. https://doi.org/10.1016/S0267-7261(02)00130-6.
  2. Al Ghanim, A.A., Shafiqu, Q.S.M. and Ibraheem, A.T. (2019), "Finite element analysis of the geogrid-pile foundation system under earthquake loading", Al-Nahrain J. Eng. Sci., 22(3), 202-207. https://doi.org/10.29194/NJES.22030202.
  3. Al-Jeznawi, D., Jais, I.M. and Albusoda, B.S. (2022a), "The effect of model scale, acceleration history, and soil condition on closed-ended pipe pile response under coupled static-dynamic loads", Int. J. Appl. Sci. Eng., 19(2), 1-21. https://doi.org/10.6703/IJASE.202206_19(2).007.
  4. Al-Jeznawi, D., Jais, I.M., Albusoda, B.S., Alzabeebee, S., Keawsawasvong, S. and Khalid, N. (2023), "Numerical study of the seismic response of closed-ended pipe pile in cohesionless soils", Transp. Infrastruct. Geotechnol., 2023, 1-27. https://doi.org/10.1007/s40515-022-00273-z.
  5. Al-Jeznawi, D., Mohamed Jais, I.B., Albusoda, B.S. and Khalid, N. (2022b), "The slenderness ratio effect on the response of closed-end pipe piles in liquefied and non-liquefied soil layers under coupled static-seismic loading", J. Mech. Behav. Mater., 31(1), 83-89. https://doi.org/10.1515/jmbm-2022-0009.
  6. Al-Jeznawi, D., Mohamed Jais, I.B., Albusoda, B.S. and Khalid, N. (2022c), "Numerical modeling of single closed and open-ended pipe pile embedded in dry soil layers under coupled static and dynamic loadings", J. Mech. Behav. Mater., 31(1), 587-594. https://doi.org/10.1515/jmbm-2022-0055.
  7. Al-Neami, M.A. (2020), "A laboratory study on the influence of anisotropy on the soil behavior", Int. Rev. Civil Eng. (IRECE), 11(1), 1. https://doi.org/10.15866/irece.v11i1.17305.
  8. Alzabeebee, S. (2022), "A comparative study of the effect of the soil constitutive model on the seismic response of buried concrete pipes", J. Pipeline Sci. Eng., 2(1), 87-96. https://doi.org/10.1016/j.jpse.2021.07.001.
  9. Asaadi, A. and Sharifipour, M. (2015), "Numerical simulation of liquefaction susceptibility of soil interacting by single pile", Int. J. Min. Geo-Eng., 49(1), 47-56.
  10. ASTM Committee D-18 on Soil and Rock (1999), Subcommittee D18. 02 on Sampling and Related Field Testing for Soil Investigations, Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils, American Society for Testing and Materials, West Conshohocken, PA, USA.
  11. Beaty, M.H. and Byrne, P.M. (2011), UBCSAND Constitutive Model Version 904aR, Itasca UDM Web Site, 69.
  12. Beaty, M. and Perlea, V. (2012), "Effect on ground motion characteristics on liquefying sand dams", GeoCongress, Oakland, CA, USA, March.
  13. Bhattacharya, S. (2014), "Safety assessment of piled buildings in liquefiable soils: Mathematical tools", Encycl. Earthq. Eng., 2014, 1-16. https://doi.org/10.1007/978-3-642-361975-5_232-1.
  14. Brandenberg, S.J., Zhao, M., Boulanger, R.W. and Wilson, D.W. (2013), "P-y plasticity model for non-linear dynamic analysis of piles in liquefiable soil", J. Geotech. Geoenviron. Eng., 139(8), 1262-1274. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000847.
  15. Chen, P.C., Kek, M.K., Hu, Y.W. and Lai, C.T. (2018), "Statistical reference values for control performance assessment of seismic shake table testing", Earthq. Struct., 15(6), 595-603. https://doi.org/10.12989/eas.2018.15.6.595.
  16. Das, B.M. and Sobhan, K. (2013), Principles of Geotechnical Engineering, 8th Edition, Cengage Learning Inc., Boston, MA, USA.
  17. Desai, C.S., Zaman, M.M., Lightner, J.G. and Siriwardane, H.J. (1984), "Thin-layer element for interfaces and joints", Int. J. Numer. Anal. Method. Geomech., 8(1), 19-43. https://doi.org/10.1002/nag.1610080103.
  18. Ebeido, A., Elgamal, A., Tokimatsu, K. and Abe, A. (2019), "Pile and pile-group response to liquefaction-induced lateral spreading in four large-scale shake-table experiments", J. Geotech. Geoenviron. Eng., 145(10), 04019080. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002142.
  19. Ecemis, N. (2013), "Simulation of seismic liquefaction: 1-g model testing system and shaking table tests", Eur. J. Environ. Civil Eng., 17(10), 899-919. https://doi.org/10.1080/19648189.2013.833140.
  20. Fansuri, M.H., Chang, M., Saputra, P.D., Purwanti, N., Laksmi, A.A., Harahap, S. and Puspitasari, S.D. (2022), "Effects of various factors on behaviors of piles and foundation soils due to seismic shaking", Solid Earth Sci., 7(4), 252-267, https://doi.org/10.1016/j.sesci.2022.09.001.
  21. Forcellini, D. and Tessari, A. (2022), "Numerical assessment of the loading factors affecting liquefaction-induced failure", Geosci., 12(3), 123. https://doi.org/10.3390/geosciences12030123.
  22. Galavi, V., Petalas, A. and Brinkgreve, R.B. (2013), "Finite element modelling of seismic liquefaction in soils", Geotech. Eng. J. SEAGS & AGSSEA, 44(3), 2013.
  23. Ghiasi, V. and Eskandari, S. (2023), ''Comparing a single pile's axial bearing capacity using numerical modeling and analytical techniques'', Result. Eng., 17, 100893, https://doi.org/10.1016/j.rineng.2023.100893.
  24. Giannakou, A., Gerolymos, N., Gazetas, G., Tazoh, T. and Anastasopoulos, I. (2010), "Seismic behavior of batter piles: Elastic response", J. Geotech. Geoenviron. Eng., 136(9), 1187-1199. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000337.
  25. Hardin, B.O. (1978), "The nature of stress-strain behaviour of soils, earthquake engineering and soil dynamics", Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, Pasadena, CA, USA, June.
  26. Hokmabadi, A.S., Fatahi, B., Tabatabaiefar, S.H.R. and Samali, B. (2012), "Effects of soil-pile-structure interaction on seismic response of moment resisting buildings on soft soil", 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Nicosia, North Cyprus, June.
  27. Hussein, A.F. and El Naggar, M.H. (2022), ''Seismic helical pile response in nonliquefiable and liquefiable soil", Int. J. Geomech., 22(7), 04022094. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002378.
  28. Hussein, A.F. and El Naggar, M.H. (2021), "Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils", Soil Dyn. Earthq. Eng., 149, 106853. https://doi.org/10.1016/j.soildyn.2021.106853.
  29. Hussein, R. (2021), "Experimental and numerical modeling of piles under combined loading in liquefied sandy soil with improvement by nanomaterials", Thesis, University of Baghdad, Baghdad, Iraq.
  30. Janalizadeh, A. and Zahmatkesh, A. (2015), "Lateral response of pile foundations in liquefiable soils", J. Rock Mech. Geotech. Eng., 7(5), 532-539. https://doi.org/10.1016/j.jrmge.2015.05.001.
  31. Khan, F.Z., Ahmad, M.E. and Ahmad, N. (2021), "Shake table testing of confined adobe masonry structures", Earthq. Struct., 20(2), 149-160. https://doi: 10.12989/eas.2021.20.2.149.
  32. Liyanapathirana, D.S. and Poulos, H.G. (2005), "Pseudostatic approach for seismic analysis of piles in liquefying soil", J. Geotech. Geoenviron. Eng., 131(12), 1480-1487. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1480).
  33. Maheshwari, B.K., Truman, K.Z., El Naggar, M.H. and Gould, P.L. (2004), "Three-dimensional non-linear analysis for seismic soil-pile-structure interaction", Soil Dyn. Earthq. Eng., 24(4), 343-356. https://doi.org/10.1016/j.soildyn.2004.01.001.
  34. Mahmood, M.R., Al-Helo, K.H. and AL-harbawee, A.M. (2018), "Laboratory study of plug length development and bearing capacity of pipe pile models embedded within partially saturated cohesionless soils", Advances in Analysis and Design of Deep Foundations: Proceedings of the 1st GeoMEast International Congress and Exhibition Egypt 2017 on Sustainable Civil Infrastructures, Sharm El-Sheikh, Egypt, July.
  35. Mase, L.Z. (2020), "Seismic hazard vulnerability of Bengkulu City, Indonesia, based on deterministic seismic hazard analysis", Geotech. Geol. Eng., 38, 5433-5455. https://doi.org/10.1007/s10706-020-01375-6.
  36. Mase, L.Z., Sugianto, N. and Refrizon, R. (2021), "Seismic hazard microzonation of Bengkulu City, Indonesia", Geoenviron. Disasters, 8, 1-17. https://doi.org/10.1186/s40677-021-00178-y.
  37. Mase, L.Z., Tanapalungkorn, W., Likitlersuang, S., Ueda, K. and Tobita, T. (2022), "Liquefaction analysis of Izumio sands under variation of ground motions during strong earthquake in Osaka", Japan Soil. Found., 62(5), 101218. https://doi.org/10.1016/j.sandf.2022.101218.
  38. Martin, G.R. and Chen, C.Y. (2005), "Response of piles due to lateral slope movement", Comput. Struct., 83(8-9), 588-598. https://doi.org/10.1016/j.compstruc.2004.11.006.
  39. Makra, A. (2013), "Evaluation of the UBC3D-PLM constitutive model for prediction of earthquake induced liquefaction on embankment dams", Master Thesis, Delft University of Technology, Delft, The Netherlands.
  40. Negussey, D. (1984), "An experimental study of the small strain response of sand statewide agricultural land use baseline", Doctoral Dissertation, University of British Columbia, Vancouver, BC, Canada.
  41. Qodri, M.F., Mase, L.Z. and Likitlersuang, S. (2021), "Non-linear site response analysis of Bangkok subsoils due to earthquakes triggered by three pagodas fault", Eng. J., 25(1), 43-52. https://doi.org/10.4186/ej.2021.25.1.43
  42. Paz, M. (1994), International Handbook of Earthquake Engineering, Springer New York, NY, USA.
  43. Phanikanth, V.S., Choudhury, D. and Reddy, G.R. (2013), "Behavior of single pile in liquefied deposits during earthquakes", Int. J. Geomech., 13(4), 454-462. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000224.
  44. Sharifi, B., Nouri, G. and Ghanbari, A. (2020), "Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses", Earthq. Struct., 18(6), 667-675. https://doi.org/10.12989/eas.2020.18.6.667.
  45. Stewart, J.P., Comartin, C. and Moehle, J.P. (2004), "Implementation of soil-structure interaction models in performance-based design procedures", 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, August.
  46. Tabesh, A. and Poulos, H.G. (2001), "Pseudostatic approach for seismic analysis of single piles", J. Geotech. Geoenviron. Eng., 127(9), 757-765. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(757).
  47. Tang, L., Zhang, X., Ling, X., Li, H. and Ju, N. (2016), "Experimental and numerical investigation on the dynamic response of pile group in liquefying ground", Earthq. Eng. Eng. Vib., 15(1), 103-114. https://doi.org/10.1007/s11803-016-0308-2.
  48. Tolun, M., Emirler, B., Yildiz, A. and Gullu, H. (2020) "Dynamic response of a single pile embedded in sand including the effect of resonance", Period. Polytech. Civil Eng., 64(4), 1038-1050. https://doi.org/10.3311/PPci.15027.
  49. Winde, H.P. (2015), "Finite element modelling for earthquake loads on dykes", Master Thesis, Delft Univrsity of Technology, Delft, The Netherlands.
  50. Wood, D. (2004), Geotechnical Modelling, CRC Press, Boca Raton, FL, USA.
  51. Yang, X., Zhang, Y., Liu, H., Fan, X., Jiang, G., El Naggar, M.H., Wu, W. and Liu, X. (2022) ''Analytical solution for lateral dynamic response of pile foundation embedded in unsaturated soil'', Ocean Eng., 265, 112518. https://doi.org/10.1016/j.oceaneng.2022.112518.
  52. Zhang, Y., Chen, X., Zhang, X., Ding, M., Wang, Y. and Liu, Z. (2020), "Nonlinear response of the pile group foundation for lateral loads using pushover analysis", Earthq. Struct., 19(4), 273-286. https://doi: 10.12989/eas.2020.19.4.273.