DOI QR코드

DOI QR Code

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou (Department of Civil Engineering, Institute of Mathematics and Informatics, Democritus University of Thrace) ;
  • Anaxagoras Elenas (Department of Civil Engineering, Institute of Structural Statics and Dynamics, Democritus University of Thrace) ;
  • Basil K. Papadopoulos (Department of Civil Engineering, Institute of Mathematics and Informatics, Democritus University of Thrace)
  • Received : 2022.07.22
  • Accepted : 2023.05.14
  • Published : 2023.06.25

Abstract

This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.

Keywords

References

  1. Benjamin, J.R. (1988), "A criterion for determining exceedance of the operating basis earthquake", EPRI Report NP-5930; Electric Power Research Institute, Palo Alto, CA, USA.
  2. Bisserier, A., Boukezzoula, R. and Galichet, S. (2010), "Linear fuzzy regression using trapezoidal fuzzy intervals", Found. Reason. Under Uncert., 4(1), 1-22. https://doi.org/10.1007/978-3-642-10728-3_1.
  3. Cabanas, L., Benito, B. and Herraiz, M. (1997), "An approach to the measurement of the potential structural damage of earthquake ground motions", Earthq. Eng. Struct. Dyn., 26(1), 79-92. https://doi.org/10.1002/(SICI)10969845(199701)26:1<79::AIDEQE624>3.0.CO;2-Y.
  4. Chopra, A.K. (1995), Dynamics of Structures Theory and Applications to Earthquake Engineering, Prentice Hall International Inc., Hoboken, NJ, USA.
  5. Chou, J.S. and Tsai, C.F. (2012), "Concrete compressive strength analysis using a combined classification and regression technique", Autom. Constr., 24, 52-60. https://doi.org/10.1016/j.autcon.2012.02.001.
  6. Computers and Structures, Inc. (1998), SAP2000: Integrated Finite Element Analysis and Design of Structures: Basic Analysis Reference, Berkeley, CA, USA.
  7. Danciu, L. and Tselentis, G.A. (2007), "Engineering ground-motion parameters attenuation relationships for Greece", Bull. Seismol. Soc. Am., 97(1B), 162-183. http://dx.doi.org/10.1785/0120040087.
  8. Deshpande, N., Londhe, S. and Kulkarni, S. (2014), "Modeling compressive strength of recycled aggregate concrete by artificial neural network, model tree and non-linear regression", Int. J. Sustaina. Built Environ., 3(2), 187-198. https://doi.org/10.1016/j.ijsbe.2014.12.002.
  9. Downey, A., D'Alessandro, A., Ubertini, F. and Laflamme, F. (2018), "Automated crack detection in conductive smart-concrete structures using a resistor mesh model", Measure. Sci. Technol., 29(3), 035107. https://doi.org/10.1088/1361-6501/aa9fb8.
  10. Elenas, A. (2014), "Seismic-parameter-based statistical procedures for the approximate assessment of structural damage", Math. Probl. Eng., 2014, 1-22. https://doi.org/10.1155/2014/916820.
  11. Elenas, A., Alvanitopoulos, P. and Andreadis, I. (2009), "Intelligent techniques for seismic damage classification", 6th International Congress of Croatian Society of Mechanics, Dubrovnik, Croatia, September.
  12. Elenas, A., Vrochidou, E., Alvanitopoulos, P.F. and Andreadis, I. (2011), "Classification of seismic damages in buildings using fuzzy logic procedures", 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Corfu, Greece, May.
  13. Ellina, G., Papaschinopoulos, G. and Papadopoulos, B.K. (2020), "Research of fuzzy implications via fuzzy linear regression in data analysis for a fuzzy model", J. Comput. Method. Sci. Eng., 20(2), 879-888. https://doi.org/10.3233/JCM-194015.
  14. Ercan, I., Mehmet, F.I. and Mehmet, A.B. (2017), "Web-based evaluation of earthquake damages for reinforced concrete buildings", Earthq. Struct., 13(4), 387-396. https://doi.org/10.12989/eas.2017.13.4.387.
  15. Eurocode (2004), Design of Structures for Earthquake Resistance Part 1: General Rules, Seismic Actions, and Rules for Buildings, European Committee for Standardisation, Brussels, Belgium.
  16. Gkountakou, F. and Papadopoulos, B. (2020), "The use of fuzzy linear regression and ANFIS methods to predict the compressive strength of cement", Symmetry, 12(8), 1295. https://doi.org/10.3390/sym12081295.
  17. Gkountakou, F.I. and Papadopoulos, B.K., (2022), "The use of fuzzy linear regression with trapezoidal fuzzy numbers to predict the compressive strength of lightweight foamed concrete", Math. Modell. Eng. Probl., 9(1), 1-10. https://doi.org/10.18280/mmep.090101.
  18. Gunturi, S.K.V. and Shah, H.C. (1992), "Building specific damage estimation", Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, Spain July.
  19. Khademi, F., Akbari, M., Jamal, S.M and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9.
  20. Khademi, F. and Behfarnia, K. (2016), "Evaluation of concrete compressive strength using artificial neural network and multiple linear regression models", Int. J. Sustainab. Built Environ., 6(3), 423-432.
  21. Kostinakis, K. (2018), "Impact of the masonry infills on the correlation between seismic intensity measures and damage of R/C buildings", Earthq. Struct., 14(1), 55-71. https://doi.org/10.12989/eas.2018.14.1.055.
  22. Levesque, R. (2007), SPSS Programming and Data Management a Guide for SPSS and SAS Users, SPSS Inc., Chicago, IL, USA.
  23. Lohmann, A.W., Mendlovic, D. and Shabtay, G. (1997), "Significance of phase and amplitude in the Fourier domain", J. Opt. Soc. Am. A, 14(11), 2901-2904. https://doi.org/10.1364/JOSAA.14.002901.
  24. Meskouris, K., Butenweg, C., Hinzen, K.G. and Hoffer, R. (2019), Structural Dynamics with Applications in Earthquake and Wind Engineering, Springer, Berlin, Germany.
  25. Morfidis, K. and Kostinakis, K. (2017), "Seismic parameters' combinations for the optimum prediction of the damage state of R/C buildings using neural networks", Adv. Eng. Softw., 106, 1-6. https://doi.org/10.1016/j.advengsoft.2017.01.001.
  26. Morfidis, K. and Kostinakis, K. (2019), "Comparative evaluation of MFP and RBF neural networks' ability for instant estimation of R/C buildings' seismic damage level", Eng. Struct., 197, 109436. https://doi.org/10.1016/j.engstruct.2019.109436.
  27. Naeim, F. (2001), Earthquake Excitation and Response of Buildings, John A Martin & Associates, Inc., Los Angeles, CA, USA.
  28. Nuttli, O.W. (1979), State-of-the-Art for Assessing Earthquake Hazards in the United States, Geotechnical Laboratory, Vicksburg, MS, USA.
  29. Papadopoulos, B.K. and Sirpi, M.A. (1999), "Similarities in fuzzy regression models", J. Optim. Theory Appl., 102, 373-383. https://doi.org/10.1023/A:1021784524897.
  30. Papadopoulos, B.K. and Sirpi, M.A. (2004), "Similarities and distances in fuzzy regression modeling", Soft Comput., 8(8), 556-561. https://doi.org/10.1007/s00500-003-0314-y.
  31. Rattanalertnusorn, A., Thongteeraparp, A. and Bodhisuwan, W. (2014), "Parameter estimation of fuzzy linear regression model: The extension of Chen and Hsuef method", J. Appl. Sci., 14(7), 631-640. https://doi.org/10.3923/jas.2014.631.640.
  32. Sandeep, G.S. and Prasad, S.K. (2012), "Housner intensity and specific energy density for earthquake damage assessment from seismogram", Proceedings of International Conference on Advances in Architecture and Civil Engineering, Karnataka, India, June.
  33. Sarma, S.K. and Yang, K.S. (1987), "An evaluation of strong motion records and a new parameter A95", Earthq. Eng. Struct. Dyn., 15(1), 119-132. https://doi.org/10.1002/eqe.4290150109.
  34. Tanaka, H. and Ishibuchi, H. (1991), "Identification of possibilistic linear systems by quadratic membership functions of fuzzy parameters", Fuzzy Set. Syst., 41(2), 145-160. https://doi.org/10.1016/0165-0114(91)90218-F.
  35. Tanaka, H., Uejima, S. and Asai, K. (1982), "Linear regression analysis with fuzzy model", IEEE Trans. Syst. Man Cybern, 12(6), 903-907. http://doi.org/10.1109/TSMC.1982.4308925.
  36. Tselentis, G.A. (2011), "Assessment of arias intensity of historical earthquakes using modified mercalli intensities and artificial neural networks", Nat. Hazard. Earth Syst. Sci., 11(12), 3097-3105. https://doi.org/10.5194/nhess-11-3097-2011.
  37. Tzimopoulos, C., Papadopoulos, K. and Papadopoulos, B. (2016), "Fuzzy regression with applications in hydrology", Int. J. Eng. Innov. Technol., 5(8), 69-75. https://doi.org/10.17605/OSF.IO/VEYAH.
  38. Tyrtaiou, M. and Elenas, A. (2020), "Seismic damage potential described by intensity parameters based on Hilbert Huang transform analysis and fundamental frequency of structures", Earthq. Struct., 18(4), 507-517. https://doi.org/10.12989/eas.2020.18.4.507.
  39. Tyrtaiou, M. and Elenas, A. (2019), "Novel Hilbert spectrum-based seismic intensity parameters interrelated with structural damage", Earthq. Struct., 16(2), 197-208. https://doi.org/10.12989/eas.2019.16.2.197.
  40. Yang, D., Pan, J. and Li, G. (2010), "Interstory drift ratio of building structures subjected to near-fault ground motions based on generalized drift spectral analysis", Soil Dyn. Earthq. Eng., 30(11), 1182-97. https://doi.org/10.1016/j.soildyn.2010.04.026.
  41. Vui, V.C. and Hamid, R.R. (2014), "Correlation between parameters of pulse-type motions and damage of low-rise RC frames", Earthq. Struct., 7(3), 365-384. https://doi.org/10.12989/eas.2014.7.3.365.
  42. Von Thun, J.L., Rochim, L.H., Scott, G.A. and Wilson, J.A. (1988), "Earthquake ground motions for design and analysis of dams", Earthq. Eng. Soil Dyn. II Recent Adv. Gr. Mot. Eval., 20, 463-481.
  43. Vrochidou, E., Alvanitopoulos, P.F., Andreadis, I. and Elenas, A. (2018), "Fuzzy inference systems for structural damage estimation", 16th European Conference on Earthquake Engineering, Thessaloniki, Greece, June.
  44. Vrochidou, E., Bizergianidou, V., Andreadis, I. and Elenas, A. (2021), "Assessment and localization of structural damage in R/C structures through intelligent seismic signal processing", Appl. Artif. Intell., 35(9), 670-695. https://doi.org/10.1080/08839514.2021.1935589.