DOI QR코드

DOI QR Code

Two scale seismic analysis of masonry infill concrete frames through hybrid simulation

  • Cesar Paniagua Lovera (Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria) ;
  • Gustavo Ayala Milian (Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria)
  • Received : 2023.01.08
  • Accepted : 2023.04.23
  • Published : 2023.06.25

Abstract

This paper presents the application of hybrid-simulation-based adapter elements for the non-linear two-scale analysis of reinforced concrete frames with masonry infills under seismic-like demands. The approach provides communication and distribution of the computations carried out by two or more remote or locally distributed numerical models connected through the OpenFresco Framework. The modeling consists of a global analysis formed by macro-elements to represent frames and walls, and to reduce global degrees of freedom, portions of the structure that require advanced analysis are substituted by experimental elements and dimensional couplings acting as interfaces with their respective sub-assemblies. The local sub-assemblies are modeled by solid finite elements where the non-linear behavior of concrete matrix and masonry infill adopt a continuum damage representation and the reinforcement steel a discrete one, the conditions at interfaces between concrete and masonry are considered through a contact model. The methodology is illustrated through the analysis of a frame-wall system subjected to lateral loads comparing the results of using macro-elements, finite element model and experimental observations. Finally, to further assess and validate the methodology proposed, the paper presents the pushover analysis of two more complex structures applying both modeling scales to obtain their corresponding capacity curves.

Keywords

Acknowledgement

This research was supported by the General Directorate for Affairs of Academic Personnel (DGAPA) of the National Autonomous University of Mexico (UNAM), through the PAPIIT project number IN106917. This research was also possible thanks to the graduate scholarship of the first author by National Council for Science and Technology (CONACyT) and to the meaningful contributions of Dr. Jaime Retama, member of the same research group.

References

  1. Armero, F. and Petocz, E. (1999), "A new dissipative time-stepping algorithm for frictional contact problems: Formulation and analysis", Comput. Method. Appl. Mech. Eng., 179(1-2), 151-178. https://doi.org/10.1016/S0045-7825(99)00036-5.
  2. Bathe, K.J. (2014), Finite Element Procedures, Prentice Hall, Watertown, MA, USA.
  3. Bousias, S., Sextos, A., Kwon, O.S., Taskari, O., Elnashai, A., Evangeliou, N. and Di Sarno, L. (2019), "Intercontinental hybrid simulation for the assessment of a three-span R/C highway overpass", J. Earthq. Eng., 23(7), 1-22. https://doi.org/10.1080/13632469.2017.1351406.
  4. Cook, R., Malkus, D., Plesha, M. and Witt, R. (2002), Concepts and Applications of Finite Element Analysis, John Wiley, Hoboken, NJ, USA.
  5. Crisafulli, F.J., Carr, A.J. and Park, R. (2000), "Analytical modelling of infilled frame structures: A general review", Bull. N. Z. Soc. Earthq. Eng., 33(1), 30-47. https://doi.org/10.5459/bnzsee.33.1.30-47.
  6. Fish, J. (2013), Practical Multiscaling, John Wiley & Sons, Chichester, WS, UK.
  7. Flores, L., Marcelino, J., Lazalde, G. and Alcocer, S. (1999), "Evaluacion experimental del desempeno de marcos con bloque hueco de concreto reforzados con malla electrosoldada y recubrimiento de concreto", Research Report Number IEG/03/99; Centro Nacional de Prevencion de Desastres, Ciudad de Mexico, Mexico. (in Spanish).
  8. Hashemi, S.A. (2007), "Seismic evaluation of reinforced concrete buildings including effects of masonry infill walls", PEER Report 2007/100; University of California, Berkeley, CA, USA.
  9. Huang, Y., Schellenberg, A., Mahin, S. and Fenves, G. (2008), "Coupling FE software through adapter elements: A novel use of user defined elements", 10th International LS-DYNA Users Conference, Detroit, MI, USA, June.
  10. Kim, H. (2009), "Extending hybrid simulation methods in OpenFresco software framework", PEER Report CE299; University of California, Berkeley, CA, USA.
  11. Kim, N.H. (2015), Introduction to Nonlinear Finite Element Analysis, Springer Science & Business Media, Manhattan, NY, USA.
  12. King, G.J.W. and Pandey, P.C. (1978), "The analysis of infilled frames using finite elements", Proc. Inst. Civil Eng., 65(4), 749-760. https://doi.org/10.1680/iicep.1978.2707.
  13. Kwon, O.S, Elnashai, A.S. and Spencer, B.F. (2008), "A framework for distributed analytical and hybrid simulations", Struct. Eng. Mech., 30(3), 331-350. https://doi.org/10.12989/sem.2008.30.3.331.
  14. Li, X., Gao, W. and Liu, W. (2019), "A mesh objective continuum damage model for quasi-brittle crack modeling and finite element implementation", Int. J. Damage Mech., 28(9), 1299-1322. https://doi.org/10.1177/1056789518823876.
  15. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  16. Mata, P., Barbat, A.H. and Oller, S. (2008), "Two-scale approach for the nonlinear dynamic analysis of RC structures with local non-prismatic parts", Eng. Struct., 30(12), 3667-3680. https://doi.org/10.1016/j.engstruct.2008.06.011.
  17. Markou, G., Mourlas, C, Gravett, D., Bakas, N., Manolis, P. and Taljaard, V. (2021), "New fundamental period formular for soil-reinforced concrete structures interaction using machine learning algorithms and ANNs", Soil Dyn. Earthq. Eng., 144(2), 1-30. https://doi.org/10.1016/j.soildyn.2021.106656.
  18. Oliver, J. (1989), "A consistent characteristic length for smeared cracking models", Int. J. Numer. Method. Eng., 28(2), 461-474. https://doi.org/10.1002/nme.1620280214.
  19. Oliver, J., Cervera, M., Oller, S. and Lubliner, J. (1990), "Isotropic damage models and smeared crack analysis of concrete", 2nd SCI-C International Conference of Computer Aided Analysis and Design of Concrete Structures, Zell Am See, Austria, April.
  20. OpenSees (2006), Open System for Earthquake Engineering Simulation; Pacific Earthquake Research Center, CA, USA. https://opensees.berkeley.edu/index.php
  21. OpenSees (2016), Force-Based Beam-Column Element; Pacific Earthquake Research Center, CA, USA. https://opensees.berkeley.edu/wiki/index.php/Force-Based_Beam-Column_Element
  22. Roosta, S. and Liu, Y. (2022), "Development of a macro-model for concrete masonry infilled frames", Eng. Struct., 257, 114075. https://doi.org/10.1016/j.engstruct.2022.114075.
  23. Schellenberg, A., Mahin, S.A. and Fenves, G.L. (2006), "Application of an experimental software framework for international hybrid simulation", 4th International Conference on Earthquake Engineering, Taipei, Taiwan, October.
  24. Schellenberg, A., Mahin, S.A. and Fenves, G.L. (2007), "A software framework for hybrid simulation of large structural systems", ASCE Structural Engineering Research Frontiers Congress, Long Beach, CA, USA, May.
  25. Schellenberg, A., Huang, Y. and Mahin, S.A. (2008), "Structural FE-software coupling through the experimental software framework, OpenFresco", 14th World Conference on Earthquake Engineering, Beijing, China, October.
  26. Schellenberg, A.H. (2009), "Advanced implementation of hybrid simulation", PEER Report 2009/104; University of California, Berkeley, CA, USA.
  27. Simo, J.C. and Ju, J.W. (1987), "Strain-and stress-based continuum damage models - I. Formulation", Int. J. Solid. Struct., 23(7), 821-840. https://doi.org/10.1016/0020-7683(87)90083-7.
  28. Takanashi, K., Udagawa, K., Seki, M., Okada, T. and Tanaka, H. (1975), "Nonlinear earthquake response analysis of structures by a computer-actuator on-line system", Bull. Earthq. Resist. Struct. Res. Center, 8, 1-17.
  29. Weinan, E. (2011), Principles of Multiscale Modeling, Cambridge University Press, New York, NY, USA.
  30. Yacila, J., Camata, G., Salsavilca, J. and Tarque, N. (2019), "Pushover analysis of confined masonry walls using a 3D macro-modelling approach", Eng. Struct., 201, 109731. https://doi.org/10.1016/j.engstruct.2019.109731.
  31. Yue, J.G., Fafitis, A., Qian, J. and Lei, T. (2011), "Application of 1D/3D finite elements coupling for structural nonlinear analysis", J. Cent. South Univ., 18(3), 889-897. https://doi.org/10.1007/s11771-011-0778-3.