DOI QR코드

DOI QR Code

Crack initiation mechanism and meso-crack evolution of pre-fabricated cracked sandstone specimens under uniaxial loading

  • Bing Sun (School of Civil Engineering, University of South China) ;
  • Haowei Yang (School of Civil Engineering, University of South China) ;
  • Sheng Zeng (School of Resources Environment and Safety Engineering, University of South China) ;
  • Yu Yin (School of Resources Environment and Safety Engineering, University of South China) ;
  • Junwei Fan (School of Civil Engineering, University of South China)
  • Received : 2022.11.02
  • Accepted : 2023.05.04
  • Published : 2023.06.25

Abstract

The instability and failure of engineered rock masses are influenced by crack initiation and propagation. Uniaxial compression and acoustic emission (AE) experiments were conducted on cracked sandstone. The effect of the crack's dip on the crack initiation was investigated using fracture mechanics. The crack propagation was investigated based on stress-strain curves, AE multi-parameter characteristics, and failure modes. The results show that the crack initiation occurs at the tip of the pre-fabricated crack, and the crack initiation angle increases from 0° to 70° as the dip angle increases from 0° to 90°. The fracture strength kcr is derived varies in a U-shaped pattern as β increased, and the superior crack angle βm is between 36.2 and 36.6 and is influenced by the properties of the rock and the crack surface. Low-strength, large-scale tensile cracks form during the crack initiation in the cracked sandstone, corresponding to the start of the AE energy, the first decrease in the b-value, and a low r-value. When macroscopic surface cracks form in the cracked sandstone, high-strength, large-scale shear cracks form, resulting in a rapid increase in the AE energy, a second decrease in the b-value and an abrupt increase in the r-value. This research has significant theoretical implications for rock failure mechanisms and establishment of damage indicators in underground engineering.

Keywords

Acknowledgement

This work was supported by the Natural Science Foundation of Hunan Province, China(Grant No.2021JJ30575), and National Natural Science Foundation of China(Grant No. 51204098).

References

  1. Aggelis, D.G. (2011), "Classification of cracking mode in concrete by acoustic emission parameters", Mech. Res. Commun., 38(3), 153-157. https://doi.org/10.1016/j.mechrescom.2011.03.007.
  2. Aliha, M.R.M., Mahdavi, E. and Ayatollahi, M.R. (2017), "The influence of specimen type on tensile fracture toughness of rock materials", Pure. Appl. Geophys., 174(3), 1237-1253. https://doi.org/10.1007/s00024-016-1458-x.
  3. Abdollahipour, A., Marji, M.F., Bafghi, A.Y. and Gholamnejad, J. (2016), "Time-dependent crack propagation in a poroelastic medium using a fully coupled hydromechanical displacement discontinuity method", Int. J. Fract., 199, 71-87. https://doi.org/10.1007/s10704-016-0095-9.
  4. Abdollahipour, A. and Marji, M.F. (2020), "A thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments", Renew. Energ.., 153, 1488-1503. https://doi.org/10.1016/j.renene.2020.02.110.
  5. Eberhardt, E., Stead, D., Stimpson, B. and Read, R.S. (1998), "Identifying crack initiation and propagation thresholds in brittle rock", Can. Geotech. J., 35(2), 222-233. https://doi.org/10.1139/t97-09.
  6. Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic. Eng., https://doi.org/10.1115/1.3656897.
  7. Gan, Y.X., Wu, S.C., Ren, Y. and Zhang, G. (2020), "Evaluation indexes of granite splitting failure based on RA and AF of AE parameters", Rock. Soil. Mech., 41(7), 2324-2332. http://dx.doi.org/10.16285/j.rsm.2019.1460.
  8. Ganne, P., Vervoort, A. and Wevers, M. (2007), "Quantification of pre-peak brittle damage: Correlation between acoustic emission and observed micro-fracturing", Int. J. Rock. Mech. Min. Sci., 44(5), 720-729. https://doi.org/10.1016/j.ijrmms.2006.11.003.
  9. Garcimartin, A., Guarino, A., Bellon, L. and Ciliberto, S. (1997), "Statistical properties of fracture precursors", Phys. Rev. Lett., 79(17), 3202. https://doi.org/10.1103/PhysRevLett.79.3202.
  10. Guo, Q.F., Wu, X., Cai, MF., Ren, F.H. and Pan, J.L. (2019), "Crack initiation mechanism of pre-existing cracked granite", J. China. Coal. Soc., 44(S2), 476-483. http://dx.doi.org/10.13225/j.cnki.jccs.2019.1212.
  11. Gutenberg, B. and Richter, C.F. (1944), "Frequency of earthquakes in California", Bull. Seismol. Soc. Am., 34(4), 185-188. https://doi.org/10.1785/BSSA0340040185.
  12. Haeri, H., Sarfarazi, V., Ebneabbasi, P., Shahbazian, A., Marji, M.F. and Mohamadi, A.R. (2020), "XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression", Constr. Build. Mater., 236, 117500. https://doi.org/10.1016/j.conbuildmat.2019.117500.
  13. Huang, S.Y., Wang, J.J., Wang, A.G., Ji, E.Y., Guo, W.L. and Ji, S.Y. (2021), "Fracture failure mechanism and fracture criterion of compacted clay under compression and shear action", Chin. J. Geotech. Eng., 43(3), 492-501. http://dx.doi.org/10.11779/CJGE202103012.
  14. Kim, J.S., Lee, K.S., Cho, W.J., Choi, H.J. and Cho, G.C. (2015), "A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock", Rock. Mech., 48(2), 495-508. https://doi.org/10.1007/s00603-014-0590-0.
  15. Li, X., Liang, Y., Luo, Y. and Ai, C. (2020), "Predicting hydraulic fracture propagation based on maximum energy release rate theory with consideration of T-stress", Fuel., 269, 117337. https://doi.org/10.1016/j.fuel.2020.117337.
  16. Li, N., Sun, W., Huang, B., Chen, D., Zhang, S. and Yan, M. (2021), "Acoustic emission source location monitoring of laboratory-scale hydraulic fracturing of coal under true triaxial stress", Nat. Resour. Res., 30, 2297-2315. https://doi.org/10.1007/s11053-021-09821-9.
  17. Li, X.F., Liu, G.L. and Lee, K.Y. (2009), "Effects of T-stresses on fracture initiation for a closed crack in compression with frictional crack faces", Int. J. Fract., 160(1), 19-30. https://doi.org/10.1007/s10704-009-9397-5.
  18. Lin, B.S. (1985), "The mixed mode brittle fracture criteria in siliding mode fracture", Appl. Math. Mech., 6(11), 1061-1067. https://doi.org/10.1007/BF03250505.
  19. Liu, H.Y. (2019), "Initiation mechanism of cracks of rock in compression and shear considering T-stress", Chin. J. Geotech. Eng., 41(07), 1296-1302. http://dx.doi.org/10.11779/CJGE201907014.
  20. Liu, X.L., Liu, Z., Li, X.B. and Han, M.S. (2019), "Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads", Rock. Soil. Mech., 40(1), 267-274. http://dx.doi.org/10.16285/j.rsm.2018.2161.
  21. Lu, K. and Meshii, T. (2014), "Three-dimensional T-stresses for three-point-bend specimens with large thickness variation", Eng, Fract, Mech., 116(1), 197-203. https://doi.org/10.1016/j.engfracmech.2013.12.011.
  22. Martin, C.D. and Chandler, N.A. (1994), "The progressive fracture of Lac du Bonnet granite", Int. J. Rock. Mech. Min. Sci., 31(6), 643-659. https://doi.org/10.1016/0148-9062(94)90005-1.
  23. Ohtsu, M., Isoda, T. and Tomoda, Y. (2007), "Acoustic emission techniques standardized for concrete structures", Phys. Rev. lett., 25, 21-32. https://doi.org/10.4028/www.scientific.net/AMR.13-14.183.
  24. Rezanezhad, M., Lajevardi, S.A. and Karimpouli, S. (2020), "Effects of pore (s)-crack locations and arrangements on crack growth modeling in porous media", Theor. Appl. Fract. Mech., 107, 102529. https://doi.org/10.1016/j.tafmec.2020.102529.
  25. Rezanezhad, M., Lajevardi, S.A. and Karimpouli, S. (2021), "Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: A numerical investigation in microscale", Eng. Fract. Mech., 253, 107882. https://doi.org/10.1016/j.engfracmech.2021.107882.
  26. RILEM Technical Committee (Masayasu Ohtsu)**. (2010), "Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete*", Mater. Struct., 43(9), 1183-1186. https://doi.org/10.1617/s11527-010-9638-0.
  27. Sun, B., Yang, P., Liu, S. and Zeng, S. (2023), "Impact dynamic characteristics and constitutive model of granite damaged by cyclic loading", J. Mater. Res. Technol., 24, 333-345. https://doi.org/10.1016/j.jmrt.2023.03.047.
  28. Shlyannikov, V.N. (2013), "T-stress for crack paths in test specimens subject to mixed mode loading", Eng. Fract. Mech., 108, 3-18. https://doi.org/10.1016/j.engfracmech.2013.03.011.
  29. Sun, B., Yang, H., Fan, J., Liu, X. and Zeng, S. (2023), "Energy evolution and damage characteristics of rock materials under different cyclic loading and unloading paths", Buildings., 13(1), 238. https://doi.org/10.3390/buildings13010238.
  30. Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493.
  31. Sun, B., Liu, S., Zeng, S., Wang, S.Y. and Wang, S.P. (2021), "Dynamic characteristics and fractal representations of crack propagation of rock with different fissures under multiple impact loadings", Sci. Rep., 11(1), 1-16. https://doi.org/10.1038/s41598-021-92277-x.
  32. Tang, S.B. (2015), "The effect of T-stress on the fracture of brittle rock under compression", Int. J. Rock. Mech. Min. Sci., 79, 86-98. https://doi.org/10.1016/j.ijrmms.2015.06.009.
  33. Wang, C.L., Hou, X.L., Li, H.T., Zhang, S.J. and Tao, G. (2019), "Experimental investigation on dynamic evolution characteristics of micro-cracks for sandstone rocks under uniaxial compression", Chin. J. Geotech. Eng., 41(11), 2120-2125. http://dx.doi.org/10.11779/CJGE201911018.
  34. Wang, G.L., Wang, R.Q., Sun, F. and Cao T.C. (2021), "Study on RA-AF characteristics of acoustic emission and failure mode of karst-fissure limestone under uniaxial compression", China. J. Highw. Transp., 35(08), 1-13. http://kns.cnki.net/kcms/detail/61.1313.U.20211025.1428.002.html. 1025.1428.002.html
  35. Wang, J., Li, Y., Song, W.D. and Xu, W.B. (2019), "Analysis of damage evolution characteristics of jointed rock mass with different joint dip angles", J. Harbin. Inst. Technol., 51(8), 143-150. http://dx.doi.org/10.11918/j.issn.0367-6234.201805091.
  36. Wang, M., Shao, X., Zhu, L. and Zhou, Z. (2021), "Use of acoustic emission to determine the effects of bedding and stress paths on micro-cracking evolution of anisotropic shale under cyclic loading tests", Environ. Earth. Sci., 80(15), 1-14. https://doi.org/10.1007/s12665-021-09761-w.
  37. Wei, M., Dai, F., Liu, Y., Li, A. and Yan, Z. (2021), "Influences of loading method and notch type on rock fracture toughness measurements: from the perspectives of T-stress and fracture process zone", Rock. Mech., 54(9), 4965-4986. https://doi.org/10.1007/s00603-021-02541-9.
  38. Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", J. Appl. Mech., 24(1), 109-114. https://doi.org/10.1115/1.4011454.
  39. Williams, J.G. and Ewing, P.D. (1972), "Fracture under complex stress-the angled crack problem", Int. J. Fract. Mech., 8(4), 441-446. https://doi.org/10.1007/BF00191106.
  40. Wu, H., Dai, B., Cheng, L., Lu, R., Zhao, G. and Liang, W. (2021), "Experimental study of dynamic mechanical response and energy dissipation of rock having a circular opening under impact loading", Min. Metall. Explor., 38(2), 1111-1124. https://doi.org/10.1007/s42461-021-00405-y.
  41. Wu, H., Ma, D., Spearing, A.J.S. and Zhao, G. (2021), "Fracture response and mechanisms of brittle rock with different numbers of openings under uniaxial loading", Geomech. Geoeng., 25(6), 481-493. https://doi.org/10.12989/gae.2021.25.6.481.
  42. Yuan, Y., Fu, J.L., Wang, X.L. and Shang, X. (2020), "Experimental study on mechanical properties of prefabricated single-cracked red sandstone under uniaxial compression", Adv. Civ. Eng., 2020. https://doi.org/10.1155/2020/8845368.
  43. Zhang, G., Wang, M., Li, X., Yue, S., Wen, Z. and Han, S. (2021), "Micro- and macrocracking behaviors in granite and molded gypsum containing a single flaw", Constr. Build. Mater., 292, 123452. https://doi.org/10.1016/j.conbuildmat.2021.123452.
  44. Zhang, Y.B., Zhang, X., Liang, P., Sun, L., Yao, X.L., Liu, X.X. and Liang, J.L. (2019), "Experimental research on time-frequency characteristics of AE P-wave and S-wave of granite under failure process", Chin. J. Rock. Mech. Eng., 38(2), 3554-3564. https://doi.org/10.13722/j.cnki.jrme.2019.0250.
  45. Zhao, Y.L., Fan, Y., Zhu, Z.M., Zhou, C.L. and Qiu, H. (2018), "Analytical and experimental study on the effect of T-stress on behavior of closed cracks", Chin. J. Rock. Mech. Eng., 37(6), 1340-1349. https://doi.org/10.13722/j.cnki.jrme.2017.1563.