Acknowledgement
This work was supported by the Natural Science Foundation of Hunan Province, China(Grant No.2021JJ30575), and National Natural Science Foundation of China(Grant No. 51204098).
References
- Aggelis, D.G. (2011), "Classification of cracking mode in concrete by acoustic emission parameters", Mech. Res. Commun., 38(3), 153-157. https://doi.org/10.1016/j.mechrescom.2011.03.007.
- Aliha, M.R.M., Mahdavi, E. and Ayatollahi, M.R. (2017), "The influence of specimen type on tensile fracture toughness of rock materials", Pure. Appl. Geophys., 174(3), 1237-1253. https://doi.org/10.1007/s00024-016-1458-x.
- Abdollahipour, A., Marji, M.F., Bafghi, A.Y. and Gholamnejad, J. (2016), "Time-dependent crack propagation in a poroelastic medium using a fully coupled hydromechanical displacement discontinuity method", Int. J. Fract., 199, 71-87. https://doi.org/10.1007/s10704-016-0095-9.
- Abdollahipour, A. and Marji, M.F. (2020), "A thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments", Renew. Energ.., 153, 1488-1503. https://doi.org/10.1016/j.renene.2020.02.110.
- Eberhardt, E., Stead, D., Stimpson, B. and Read, R.S. (1998), "Identifying crack initiation and propagation thresholds in brittle rock", Can. Geotech. J., 35(2), 222-233. https://doi.org/10.1139/t97-09.
- Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic. Eng., https://doi.org/10.1115/1.3656897.
- Gan, Y.X., Wu, S.C., Ren, Y. and Zhang, G. (2020), "Evaluation indexes of granite splitting failure based on RA and AF of AE parameters", Rock. Soil. Mech., 41(7), 2324-2332. http://dx.doi.org/10.16285/j.rsm.2019.1460.
- Ganne, P., Vervoort, A. and Wevers, M. (2007), "Quantification of pre-peak brittle damage: Correlation between acoustic emission and observed micro-fracturing", Int. J. Rock. Mech. Min. Sci., 44(5), 720-729. https://doi.org/10.1016/j.ijrmms.2006.11.003.
- Garcimartin, A., Guarino, A., Bellon, L. and Ciliberto, S. (1997), "Statistical properties of fracture precursors", Phys. Rev. Lett., 79(17), 3202. https://doi.org/10.1103/PhysRevLett.79.3202.
- Guo, Q.F., Wu, X., Cai, MF., Ren, F.H. and Pan, J.L. (2019), "Crack initiation mechanism of pre-existing cracked granite", J. China. Coal. Soc., 44(S2), 476-483. http://dx.doi.org/10.13225/j.cnki.jccs.2019.1212.
- Gutenberg, B. and Richter, C.F. (1944), "Frequency of earthquakes in California", Bull. Seismol. Soc. Am., 34(4), 185-188. https://doi.org/10.1785/BSSA0340040185.
- Haeri, H., Sarfarazi, V., Ebneabbasi, P., Shahbazian, A., Marji, M.F. and Mohamadi, A.R. (2020), "XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression", Constr. Build. Mater., 236, 117500. https://doi.org/10.1016/j.conbuildmat.2019.117500.
- Huang, S.Y., Wang, J.J., Wang, A.G., Ji, E.Y., Guo, W.L. and Ji, S.Y. (2021), "Fracture failure mechanism and fracture criterion of compacted clay under compression and shear action", Chin. J. Geotech. Eng., 43(3), 492-501. http://dx.doi.org/10.11779/CJGE202103012.
- Kim, J.S., Lee, K.S., Cho, W.J., Choi, H.J. and Cho, G.C. (2015), "A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock", Rock. Mech., 48(2), 495-508. https://doi.org/10.1007/s00603-014-0590-0.
- Li, X., Liang, Y., Luo, Y. and Ai, C. (2020), "Predicting hydraulic fracture propagation based on maximum energy release rate theory with consideration of T-stress", Fuel., 269, 117337. https://doi.org/10.1016/j.fuel.2020.117337.
- Li, N., Sun, W., Huang, B., Chen, D., Zhang, S. and Yan, M. (2021), "Acoustic emission source location monitoring of laboratory-scale hydraulic fracturing of coal under true triaxial stress", Nat. Resour. Res., 30, 2297-2315. https://doi.org/10.1007/s11053-021-09821-9.
- Li, X.F., Liu, G.L. and Lee, K.Y. (2009), "Effects of T-stresses on fracture initiation for a closed crack in compression with frictional crack faces", Int. J. Fract., 160(1), 19-30. https://doi.org/10.1007/s10704-009-9397-5.
- Lin, B.S. (1985), "The mixed mode brittle fracture criteria in siliding mode fracture", Appl. Math. Mech., 6(11), 1061-1067. https://doi.org/10.1007/BF03250505.
- Liu, H.Y. (2019), "Initiation mechanism of cracks of rock in compression and shear considering T-stress", Chin. J. Geotech. Eng., 41(07), 1296-1302. http://dx.doi.org/10.11779/CJGE201907014.
- Liu, X.L., Liu, Z., Li, X.B. and Han, M.S. (2019), "Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads", Rock. Soil. Mech., 40(1), 267-274. http://dx.doi.org/10.16285/j.rsm.2018.2161.
- Lu, K. and Meshii, T. (2014), "Three-dimensional T-stresses for three-point-bend specimens with large thickness variation", Eng, Fract, Mech., 116(1), 197-203. https://doi.org/10.1016/j.engfracmech.2013.12.011.
- Martin, C.D. and Chandler, N.A. (1994), "The progressive fracture of Lac du Bonnet granite", Int. J. Rock. Mech. Min. Sci., 31(6), 643-659. https://doi.org/10.1016/0148-9062(94)90005-1.
- Ohtsu, M., Isoda, T. and Tomoda, Y. (2007), "Acoustic emission techniques standardized for concrete structures", Phys. Rev. lett., 25, 21-32. https://doi.org/10.4028/www.scientific.net/AMR.13-14.183.
- Rezanezhad, M., Lajevardi, S.A. and Karimpouli, S. (2020), "Effects of pore (s)-crack locations and arrangements on crack growth modeling in porous media", Theor. Appl. Fract. Mech., 107, 102529. https://doi.org/10.1016/j.tafmec.2020.102529.
- Rezanezhad, M., Lajevardi, S.A. and Karimpouli, S. (2021), "Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: A numerical investigation in microscale", Eng. Fract. Mech., 253, 107882. https://doi.org/10.1016/j.engfracmech.2021.107882.
- RILEM Technical Committee (Masayasu Ohtsu)**. (2010), "Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete*", Mater. Struct., 43(9), 1183-1186. https://doi.org/10.1617/s11527-010-9638-0.
- Sun, B., Yang, P., Liu, S. and Zeng, S. (2023), "Impact dynamic characteristics and constitutive model of granite damaged by cyclic loading", J. Mater. Res. Technol., 24, 333-345. https://doi.org/10.1016/j.jmrt.2023.03.047.
- Shlyannikov, V.N. (2013), "T-stress for crack paths in test specimens subject to mixed mode loading", Eng. Fract. Mech., 108, 3-18. https://doi.org/10.1016/j.engfracmech.2013.03.011.
- Sun, B., Yang, H., Fan, J., Liu, X. and Zeng, S. (2023), "Energy evolution and damage characteristics of rock materials under different cyclic loading and unloading paths", Buildings., 13(1), 238. https://doi.org/10.3390/buildings13010238.
- Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493.
- Sun, B., Liu, S., Zeng, S., Wang, S.Y. and Wang, S.P. (2021), "Dynamic characteristics and fractal representations of crack propagation of rock with different fissures under multiple impact loadings", Sci. Rep., 11(1), 1-16. https://doi.org/10.1038/s41598-021-92277-x.
- Tang, S.B. (2015), "The effect of T-stress on the fracture of brittle rock under compression", Int. J. Rock. Mech. Min. Sci., 79, 86-98. https://doi.org/10.1016/j.ijrmms.2015.06.009.
- Wang, C.L., Hou, X.L., Li, H.T., Zhang, S.J. and Tao, G. (2019), "Experimental investigation on dynamic evolution characteristics of micro-cracks for sandstone rocks under uniaxial compression", Chin. J. Geotech. Eng., 41(11), 2120-2125. http://dx.doi.org/10.11779/CJGE201911018.
- Wang, G.L., Wang, R.Q., Sun, F. and Cao T.C. (2021), "Study on RA-AF characteristics of acoustic emission and failure mode of karst-fissure limestone under uniaxial compression", China. J. Highw. Transp., 35(08), 1-13. http://kns.cnki.net/kcms/detail/61.1313.U.20211025.1428.002.html. 1025.1428.002.html
- Wang, J., Li, Y., Song, W.D. and Xu, W.B. (2019), "Analysis of damage evolution characteristics of jointed rock mass with different joint dip angles", J. Harbin. Inst. Technol., 51(8), 143-150. http://dx.doi.org/10.11918/j.issn.0367-6234.201805091.
- Wang, M., Shao, X., Zhu, L. and Zhou, Z. (2021), "Use of acoustic emission to determine the effects of bedding and stress paths on micro-cracking evolution of anisotropic shale under cyclic loading tests", Environ. Earth. Sci., 80(15), 1-14. https://doi.org/10.1007/s12665-021-09761-w.
- Wei, M., Dai, F., Liu, Y., Li, A. and Yan, Z. (2021), "Influences of loading method and notch type on rock fracture toughness measurements: from the perspectives of T-stress and fracture process zone", Rock. Mech., 54(9), 4965-4986. https://doi.org/10.1007/s00603-021-02541-9.
- Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", J. Appl. Mech., 24(1), 109-114. https://doi.org/10.1115/1.4011454.
- Williams, J.G. and Ewing, P.D. (1972), "Fracture under complex stress-the angled crack problem", Int. J. Fract. Mech., 8(4), 441-446. https://doi.org/10.1007/BF00191106.
- Wu, H., Dai, B., Cheng, L., Lu, R., Zhao, G. and Liang, W. (2021), "Experimental study of dynamic mechanical response and energy dissipation of rock having a circular opening under impact loading", Min. Metall. Explor., 38(2), 1111-1124. https://doi.org/10.1007/s42461-021-00405-y.
- Wu, H., Ma, D., Spearing, A.J.S. and Zhao, G. (2021), "Fracture response and mechanisms of brittle rock with different numbers of openings under uniaxial loading", Geomech. Geoeng., 25(6), 481-493. https://doi.org/10.12989/gae.2021.25.6.481.
- Yuan, Y., Fu, J.L., Wang, X.L. and Shang, X. (2020), "Experimental study on mechanical properties of prefabricated single-cracked red sandstone under uniaxial compression", Adv. Civ. Eng., 2020. https://doi.org/10.1155/2020/8845368.
- Zhang, G., Wang, M., Li, X., Yue, S., Wen, Z. and Han, S. (2021), "Micro- and macrocracking behaviors in granite and molded gypsum containing a single flaw", Constr. Build. Mater., 292, 123452. https://doi.org/10.1016/j.conbuildmat.2021.123452.
- Zhang, Y.B., Zhang, X., Liang, P., Sun, L., Yao, X.L., Liu, X.X. and Liang, J.L. (2019), "Experimental research on time-frequency characteristics of AE P-wave and S-wave of granite under failure process", Chin. J. Rock. Mech. Eng., 38(2), 3554-3564. https://doi.org/10.13722/j.cnki.jrme.2019.0250.
- Zhao, Y.L., Fan, Y., Zhu, Z.M., Zhou, C.L. and Qiu, H. (2018), "Analytical and experimental study on the effect of T-stress on behavior of closed cracks", Chin. J. Rock. Mech. Eng., 37(6), 1340-1349. https://doi.org/10.13722/j.cnki.jrme.2017.1563.