DOI QR코드

DOI QR Code

Experimental and numerical analysis of seismic behaviour for recycled aggregate concrete filled circular steel tube frames

  • Xianggang Zhang (School of Civil Engineering, Henan Polytechnic University) ;
  • Gaoqiang Zhou (School of Civil Engineering, Henan Polytechnic University) ;
  • Xuyan Liu (School of Civil Engineering, Henan Polytechnic University) ;
  • Yuhui Fan (School of Civil Engineering, Henan Polytechnic University) ;
  • Ercong Meng (School of Engineering and Technology, Southwest University) ;
  • Junna Yang (School of Civil Engineering, Henan Polytechnic University) ;
  • Yajun Huang (School of Intelligent Construction, Wuchang University of Technology)
  • Received : 2022.07.11
  • Accepted : 2023.02.08
  • Published : 2023.06.25

Abstract

To study the seismic behavior of recycled aggregate concrete filled circular steel tube (RACFCST) frames, the seismic behavior experiment of RACFCST frame was carried out to measure the hysteresis curve, skeleton curve and other seismic behavior indexes. Moreover, based on the experimental study, a feasible numerical analysis model was established to analyze the finite element parameters of 8 RACFCST frame specimens, and the influence of different variation parameters on the seismic behavior index for RACFCST frame was revealed. The results showed that the skeleton curve of specimens under different axial compression ratios were divided into three stages: elastic stage, elastic-plastic stage and descending stage, and the descending stage was relatively stable, indicating that the specimen had stronger deformation capacity in the descending stage. With the increase of axial compression ratio, the peak bearing capacity of all specimens reduced gradually, and the reduction was less than 5%. With the decrease of beam-column linear stiffness ratio, the peak bearing capacity decreased gradually. With the decrease of yield bending moment ratio of beam-column, the peak bearing capacity decreased gradually, and the decreasing rate of peak bearing capacity gradually accelerated. In addition, compared with the axial compression ratio, the beam-column linear stiffness ratio and the yield bending moment ratio of beam-column had a more significant influence on the peak bearing capacity of RACFCST frame.

Keywords

Acknowledgement

This work was financially supported by the Funds for Establishment Project of Double First-Class Disciplines of Safety and Energy Engineering Department (AQ20230731).

References

  1. Ahmadi, M., Farzin, S., Hassani, A. and Motamedi, M. (2017), "Mechanical properties of the concrete containing recycled fibers and aggregates", Constr. Build. Mater., 144, 392-398. https://doi.org/10.1016/j.conbuildmat.2017.03.215.
  2. Cai, Y.C. and Kwan, A.K.H. (2021), "Behaviour and design of cold-formed austenitic stainless steel circular tubes infilled with seawater sea-sand concrete", Eng. Struct., 241, 112435. https://doi.org/10.1016/j.engstruct.2021.112435.
  3. Chen, Y.L., Chen, Z.P., Xu, J.J., Lui, E.M. and Wu, B. (2019), "Performance evaluation of recycled aggregate concrete under multiaxial compression", Constr. Build. Mater., 229, 116935. https://doi.org/10.1016/j.conbuildmat.2019.116935.
  4. Chen, Z.P., Jing, C.G., Xu, J.J. and Zhang, X.G. (2017), "Seismic performance of recycled concrete-filled square steel tube columns", Earthq. Eng. Eng. Vib., 16(1), 119-130. https://doi.org/10.1007/s11803-017-0372-2.
  5. Chen, Z.P., Xu, J.J., Chen, Y.L. and Lui, E.M. (2016), "Recycling and reuse of construction and demolition waste in concrete-filled steel tubes: A review", Constr. Build. Mater., 126, 641-660. https://doi.org/10.1016/j.conbuildmat.2016.09.063.
  6. Chen, Z.P., Zhou, J., Li, Z.B., Wang, X.Y. and Zhou, X.Y. (2020), "Seismic behavior of concrete-filled circular steel tubular column-reinforced concrete beam frames with recycled aggregate concrete", Appl. Sci., 10(7), 2609. https://doi.org/10.3390/app10072609.
  7. Chinzorigt, G., Lim, M.K., Yu, M., Lee, H., Enkbold, O. and Choi, D. (2020), "Strength, shrinkage and creep and durability aspects of concrete including CO2 treated recycled fine aggregate", Cement Concrete Res., 136, 106062. https://doi.org/10.1016/j.cemconres.2020.106062.
  8. de Azevedo, V.D., de Lima, L.R.O., Vellasco, P.C.G.D., Tavares, M.E.D. and Chan, T.M. (2021), "Experimental investigation on recycled aggregate concrete filled steel tubular stub columns under axial compression", J. Constr. Steel. Res., 187, 106930. https://doi.org/10.1016/j.jcsr.2021.106930.
  9. Dilbas, H. and Cakir, O. (2021), "Physical and mechanical properties of treated recycled aggregate concretes: Combination of mechanical treatment and silica fume", J. Mater. Civil. Eng., 33(6), 04021096. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003658.
  10. Ding, Y.H., Guo, S.Q., Zhang, X.G., Zhang, M.X. and Wu, J. (2021), "Effect of basalt fiber on the freeze-thaw resistance of recycled aggregate concrete", Comput. Concrete, 28(2), 115-127. https://doi.org/10.12989/cac.2021.28.2.115.
  11. He, A., Cai, J., Chen, Q.J., Liu, X.P., Xue, H. and Yu, C.J. (2017), "Axial compressive behaviour of steel-jacket retrofitted RC columns with recycled aggregate concrete", Constr. Build. Mater., 141, 501-516. https://doi.org/10.1016/j.conbuildmat.2017.03.013.
  12. Jiang, T., Wang, X.M., Chen, G.M., Zhang, J.J. and Zhang, W.P. (2019), "Behavior of recycled brick block concrete-filled FRP tubes under axial compression", Eng. Struct., 198, 109498. https://doi.org/10.1016/j.engstruct.2019.109498.
  13. Kim, J. (2021), "Properties of recycled aggregate concrete designed with equivalent mortar volume mix design", Constr. Build. Mater., 301, 124091. https://doi.org/10.1016/j.conbuildmat.2021.124091.
  14. Li, B.B., Dai, S.L., Zhan, Y., Xu, J.J., Guo, X.W., Yang, Y.Q. and Chen, Y.L. (2022), "Strength criterion of recycled aggregate concrete under triaxial Compression: Model calibration", Constr. Build. Mater., 320, 126201. https://doi.org/10.1016/j.conbuildmat.2021.126201.
  15. Liu, F., Yu, Y.Y., Li, L.J. and Zeng, L. (2018) "Experimental study on reuse of recycled concrete aggregates for load-bearing components of building structures", J. Mater. Cycle. Waste, 20(2), 995-1005. https://doi.org/10.1007/s10163-017-0661-x.
  16. Manzi, S., Mazzotti, C. and Bignozzi, M.C. (2017), "Self-compacting concrete with recycled concrete aggregate: Study of the long-term properties", Constr. Build. Mater., 157, 582-590. https://doi.org/10.1016/j.conbuildmat.2017.09.129.
  17. Medjigbodo, S., Bendimerad, A.Z., Roziere, E. and Loukili, A. (2018), "How do recycled concrete aggregates modify the shrinkage and self-healing properties", Cement Concrete Compos., 86, 72-86. https://doi.org/10.1016/j.cemconcomp.2017.11.003.
  18. Nour, A.I. and Guneyisi, E.M. (2019), "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns", Compos. Part B Eng., 173, 106938. https://doi.org/10.1016/j.compositesb.2019.106938.
  19. Pandurangan, K., Dayanithy, A. and Prakash, S.O. (2016), "Influence of treatment methods on the bond strength of recycled aggregate concrete", Constr. Build. Mater., 120, 212-221. https://doi.org/10.1016/j.conbuildmat.2016.05.093.
  20. Sunayana, S. and Barai, S.V. (2019) "Performance of fly ash incorporated recycled aggregates concrete column under axial compression: Experimental and numerical study", Eng. Struct., 196, 109258. https://doi.org/10.1016/j.engstruct.2019.05.099.
  21. Tahmouresi, B., Koushkbaghi, M., Monazami, M., Abbasi, M.T. and Nemati, P. (2019), "Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete", Comput. Concrete, 24(3), 193-206. https://doi.org/10.12989/cac.2019.24.3.193.
  22. Tam, V.W.Y., Butera, A., Le, K.N. and Li, W.G. (2020), "Utilising CO2 technologies for recycled aggregate concrete: A critical review", Constr. Build. Mater., 250, 118903. https://doi.org/10.1016/j.conbuildmat.2020.118903.
  23. Tam, V.W.Y., Tao, Z. and Evangelista, A. (2021), "Performance of recycled aggregate concrete filled steel tubular (RACFST) stub columns with expansive agent", Constr. Build. Mater., 272, 121627. https://doi.org/10.1016/j.conbuildmat.2020.121627.
  24. Tang, Y.C., Li, L.J., Feng, W.X., Liu, F. and Zhu, M. (2018), "Study of seismic behavior of recycled aggregate concrete-filled steel tubular columns", J. Constr. Steel. Res., 148, 1-15. https://doi.org/10.1016/j.jcsr.2018.04.031.
  25. Thomas, C., de Brito, J., Cimentada, A. and Sainz-Aja, J.A. (2020), "Macro- and micro- properties of multi-recycled aggregate concrete", J. Clean. Prod., 245, 118843. https://doi.org/10.1016/j.jclepro.2019.118843.
  26. Wu, K., Chen, F., Xu, C., Lin, S.Q. and Nan, Y. (2017), "Internal curing effect on strength of recycled concrete and its enhancement in concrete-filled thin-wall steel tube", Constr. Build. Mater., 153, 824-834. https://doi.org/10.1016/j.conbuildmat.2017.07.117.
  27. Xiao, J.Z., Li, J.B. and Zhang, C. (2005), "Mechanical properties of recycled aggregate concrete under uniaxial loading", Cement. Concrete. Res, 35(6), 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020.
  28. Xie, L., Chen, M.C., Sun, W., Yuan, F. and Huang, H. (2019), "Behaviour of concrete-filled steel tubular members under pure bending and acid rain attack: Test simulation", Adv. Struct. Eng., 22(1), 240-253. https://doi.org/10.1177/1369433218783323.
  29. Xu, D.Y., Chen, Z.P. and Zhou, C.H. (2020), "Seismic performance of recycled concrete filled circular steel tube columns", Front. Mater., 7, 612059. https://doi.org/10.3389/fmats.2020.612059.
  30. Xu, J.J., Chen, Z.P., Xue, J.Y., Chen, Y.L. and Zhang, J.T. (2017), "Simulation of seismic behavior of square recycled aggregate concrete-filled steel tubular columns", Constr. Build. Mater., 149, 553-566. https://doi.org/10.1016/j.conbuildmat.2017.05.013.
  31. Xu, J.J., Wang, Y.M., Ren, R., Wu, Z.J. and Ozbakkaloglu, T. (2020), "Performance evaluation of recycled aggregate concrete-filled steel tubes under different loading conditions: Database analysis and modelling", J. Build. Eng., 30, 101308. https://doi.org/10.1016/j.jobe.2020.101308.
  32. Yang, Y.F. (2015), "Modelling of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to cyclic loading", Steel Compos. Struct., 18(1), 213-233. https://doi.org/10.12989/scs.2015.18.1.213.
  33. Zhang, X.G. and Gao, X. (2019), "The hysteretic behavior of recycled aggregate concrete-filled square steel tube columns," Eng. Struct., 198, 109523. https://doi.org/10.1016/j.engstruct.2019.109523.
  34. Zhang, X.G., Chen, Z.P., Xue, J.Y. and Su, Y.S. (2016), "Test and finite element analysis of seismic performance for recycled aggregate concrete filled circular steel tube column", J. Basic Sci. Eng., 24(3), 582-594. https://doi.org/10.16058/j.issn.1005-0930.2016.03.015.
  35. Zhang, X.G., Gao, X., Wang, X.G., Meng, E.C. and Wang, F. (2020), "Axial compression performance of basalt-fiber-reinforced recycled-concrete- filled square steel tubular stub column", Adv. Concrete Constr., 10(6), 559-571. https://doi.org/10.12989/acc.2020.10.6.559.
  36. Zhou, C.H. and Chen, Z.P. (2017), "Mechanical properties of recycled concrete made with different types of coarse aggregate", Constr. Build. Mater., 134, 497-506. https://doi.org/10.1016/j.conbuildmat.2016.12.163.
  37. Zhou, L. and Su, Y.S. (2018), "Cyclic loading test on beam-to-column connections connecting SRRAC beams to RACFST columns", Int. J. Civil Eng., 16(11A), 1533-1548. https://doi.org/10.1007/s40999-018-0288-x.