DOI QR코드

DOI QR Code

Experimental research on the behavior of circular SFRC columns reinforced longitudinally by GFRP rebars

  • Iman Saffarian (Department of Civil Engineering, Estahban Branch, Islamic Azad University) ;
  • Gholam Reza Atefatdoost (Department of Civil Engineering, Estahban Branch, Islamic Azad University) ;
  • Seyed Abbas Hosseini (Faculty of Technology and Mining, Yasouj University) ;
  • Leila Shahryari (Department of Civil Engineering, Shiraz Branch, Islamic Azad University)
  • 투고 : 2022.10.07
  • 심사 : 2023.01.12
  • 발행 : 2023.06.25

초록

This research presents the experimental and theoretical evaluations on circular steel-fiber-reinforced-concrete (SFRC) columns reinforced by glass-fiber-reinforced-polymer (GFRP) rebar under the axial compressive loading. Test programs were designed to investigate and compare the effect of different parameters on the structural behavior of columns by performing tests. Theses variables included conventional concrete (CC), fiber concrete (FC), steel/GFRP longitudinal rebars, and transversal rebars configurations. A total of 16 specimens were constructed and categorized into four groups in terms of different rebar-concrete configurations, including GFRP-rebar-reinforced-CC columns (GRCC), GFRP-rebar-reinforced-FC columns (GRFC), steel-rebar-reinforced-CC columns (SRCC) and steel-rebar- reinforced-FC columns (SRFC). Experimental observations displayed that failure modes and cracking patterns of four groups of columns were similar, especially in pre-peak branches of load-deflection curves. Although the average ultimate axial load of columns with longitudinal GFRP rebars was obtained by 17.9% less than the average ultimate axial load of columns with longitudinal steel rebars, the average axial ductility index (DI) of them was gained by 10.2% higher than their counterpart columns. Adding steel fibers (SFs) into concrete led to the increases of 7.7% and 6.7% of the axial peak load and the DI of columns than their counterpart columns with CC. The volumetric ratio had greater efficiency on peak loads and DIs of columns than the type of transversal reinforcement. A simple analytical equation was proposed to predict the axial compressive capacity of columns by considering the axial involvement of longitudinal GFRP rebars, volumetric ratio, and steel spiral/hoop rebar. There was a good correlation between test results and predictions of the proposed equation.

키워드

참고문헌

  1. ACI 318-19 (2019), Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  2. ACI-committee 440 (2015), Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, American Concrete Institute, Farmington Hills, MI, USA.
  3. Afifi, M., Brahim, B. and Hamdy, M. (2013), "Strength and axial behavior of circular concrete columns reinforced with CFRP bars and spirals", J. Compos. Constr., 18(2), 04013035. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000430.
  4. Afifi, M., Hamdy, M. and Brahim, B. (2014), "Axial Capacity of circular concrete columns reinforced with GFRP bars and spirals", J. Compos. Constr., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438.
  5. ASTM-C39/C39M-18 (2018), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  6. ASTM-C143 (2005), Standard Test Method for Slump of Hydraulic Cement Concrete, ASTM International, West Conshohocken, PA, USA.
  7. ASTM-C150/C150M-18 (2018), Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, USA.
  8. AS 3600 (2018), Concrete Structures, Australian Strandards, Sidney, Australia.
  9. Bayramov, F., Tasdemir, C. and Tasdemir M.A. (2004), "Optimisation of steel fibre reinforced concretes by means of statistical response surface method", Cement Concrete Compos., 26(6), 665-675. https://doi.org/10.1016/S0958-9465(03)00161-6.
  10. Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2008), "Stress-strain behavior of steel fiber-reinforced concrete in compression", Mater. Civil Eng., 20(3), 255-263. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255).
  11. Canada ISIS (2009), Intelligent Sensing for Innovative Structures, Canada Institute for Science and International Security, Washington, D.C., USA.
  12. CAN/CSA, S806-12 (2017), Design and Construction of Building Components with Fibre-reinforced Polymers, Canadian Standards Association, Toronto, Canada.
  13. De Luca, A., Matta, F. and Nanni, A. (2010), "Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load", ACI Struct. J., 107(5), 589. https://doi.org/10.14359/51663912.
  14. Elchalakani, M. and Ma, G. (2017), "Tests of glass fibre reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading", Eng. Struct., 151, 93-104. https://doi.org/10.1016/j.engstruct.2017.08.023.
  15. Elchalakani, M., Dong, M., Karrech, A., Li, G., Mohamed, M.S.A. and Yang, B. (2019), "Experimental investigation of rectangular air-cured geopolymer concrete columns reinforced with GFRP bars and stirrups", J. Compos. Constr., 23(3), 04019011. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000938.
  16. Elchalakani, M. and Ma, G. (2017), "Tests of glass fibre-reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading", Eng. Struct., 151, 93-104. https://doi.org/10.1016/j.engstruct.2017.08.023.
  17. Elmessalami, N., El Refai, A. and Abed, F. (2019), "Fiber-reinforced polymers bars for compression reinforcement: A promising alternative to steel bars", Constr. Build. Mater., 209, 725-737. https://doi.org/10.1016/j.conbuildmat.2019.03.105.
  18. Essawy, A.S. and El-Hawary, M. (1998), "Strength and ductility of spirally reinforced rectangular concrete columns", Constr. Build. Mater., 12(1), 31-37. https://doi.org/10.1016/S0950-0618(97)00071-8.
  19. Guerin, M., Mohamed, H., Benmokrane, B, Shield, C. and Nanni, A. (2018), "Effect of glass fiber-reinforced polymer reinforcement ratio on axial-flexural strength of reinforced concrete columns", ACI Struct. J., 115, 1049-1061. https://doi.org/10.14359/51701279.
  20. Guerin, M., Mohamed, H.M., Benmokrane, B., Nanni, A. and Shield, C.K. (2018), "Eccentric behavior of full-scale reinforced concrete columns with glass fiber-reinforced polymer bars and ties", ACI Struct. J., 115, 489-499. https://doi.org/10.14359/51701107.
  21. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2016), "Axial load-moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: Experimental and theoretical investigations", J. Compos. Constr., 21(2), 04016092. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000748.
  22. Hadhood, A., Hamdy, M. and Brahim, B. (2017a), "Strength of circular HSC columns reinforced internally with carbon-fiber-reinforced polymer bars under axial and eccentric loads", Constr. Build. Mater., 141, 366-378. https://doi.org/10.1016/j.conbuildmat.2017.02.117.
  23. Hadhood, A., Hamdy, M., Brahim, B. and Faouzi, G. (2017b), "Efficiency of glass-fiber reinforced-polymer (GFRP) discrete hoops and bars in concrete columns under combined axial and flexural loads", Compos. Part B: Eng., 114, 223-236. https://doi.org/10.1016/j.compositesb.2017.01.063.
  24. Hadi, M., Hasan, H. and Sheikh, M.D. (2017), "Experimental Investigation of circular high-strength concrete columns reinforced with glass fiber-reinforced polymer bars and helices under different loading conditions", J. Compos. Constr., 21(4), 04017005. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000784.
  25. Hadi, M.N., Karim, H. and Sheikh, M.N. (2016a), "Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions", Compos. Constr., 20(4), 04016009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000670.
  26. Hadi, M.N. and Youssef, J. (2016b), "Experimental investigation of GFRP-RC and GFRP encased square concrete specimens under axial and eccentric load, and fourpoint bending test", J. Compos. Constr., 20(5), 04016020. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000675.
  27. Hadi, M.N., Karim, H. and Sheikh, M.N. (2016), "Experimental Investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions", J. Compos. Constr., 20, 04016009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000670.
  28. Hales, T.A., Pantelides, C.P. and Reaveley, L.D. (2016), "Experimental evaluation of slender high-strength concrete columns with GFRP and hybrid reinforcement", J. Compos. Constr., 20(6), 04016050. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000709.
  29. Hamdy, M., Afifi, M. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
  30. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2012), "Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars", ACI Struct. J., 109(4), 551-558. https://doi.org/10.14359/51683874.
  31. Hasan, H., Sheikh, M.D. and Hadi, M. (2017), "Performance evaluation of high strength concrete and steel fibre high strength concrete columns reinforced with GFRP bars and helices", Constr. Build. Mater., 134, 297-310. https://doi.org/10.1016/j.conbuildmat.2016.12.124.
  32. Zadeh, H.J. and Nanni, A. (2012), "Design of RC columns using glass FRP reinforcement", J. Compos. Constr., 17(3), 294-304. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000354.
  33. Karim, H., Sheikh, M.N. and Hadi, M. (2016), "Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and helices", Constr. Build. Mater., 112, 1147-1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219.
  34. Kaufmann, W., Amin, A., Beck, A. and Lee, M. (2019), "Shear transfer across cracks in steel fibre reinforced concrete", Eng. Struct., 186, 508-524. https://doi.org/10.1016/j.engstruct.2019.02.027.
  35. Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial-flexural interactions of GFRP-CFFT columns with and without reinforcing GFRP bars", J. Compos. Constr., 21(3), 04016109. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000771.
  36. Khorramian, K. and Sadeghian, P. (2017), "Experimental and Analytical behavior of short concrete columns reinforced with GFRP Bars under eccentric loading", Eng. Struct., 151, 761-773. https://doi.org/10.1016/j.engstruct.2017.08.064.
  37. Lawler, J.S., Zampini, D. and Shah, S.P. (2002), "Permeability of cracked hybrid fiber-reinforced mortar under load", ACI Mater. J., 99(4), 379-385. https://doi.org/10.14359/12220.
  38. Luca, A., Matta, F. and Nanni, A. (2010), "Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load", ACI Struct. J., 107, 589-596. https://doi.org/10.14359/51663912.
  39. Maranan, G., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2016), "Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars", Eng. Struct., 117, 422-436. https://doi.org/10.1016/j.engstruct.2016.03.036.
  40. Marara, K., Erenb, O. and Yitmena, I. (2011), "Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC)", Mater. Res., 14(2), 239-247. https://doi.org/10.1590/S1516-14392011005000042
  41. Mohamed, H., Afifi, M. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP Bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
  42. Pantelides, C.P., Gibbons, M.E. and Reaveley, L.D. (2013), "Axial load behavior of concrete columns confined with GFRP spirals", J. Compos. Constr., 17, 305-313. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000357.
  43. Raza, A. and Khan, Q.U.Z. (2020), "Experimental and theoretical study of GFRP hoops and spirals in hybrid fiber reinforced concrete short columns", Mater. Struct., 53(6), 139. https://doi.org/10.1617/s11527-020-01575-9.
  44. Raza, A., Khan, Q.U.Z. and Ahmad, A. (2021), "Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings", Eng. Struct., 227, 111461. https://doi.org/10.1016/j.engstruct.2020.111461.
  45. Saif, A., Moahmmed, K.D. and Suraparb, K. (2022), "Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars", Struct. Eng. Mech., 84(2), 143-154. https://doi.org/10.12989/sem.2022.84.2.143.
  46. Samani, A.K. and Attard, M.M. (2012), "A stress-strain model for uniaxial and confined concrete under compression", Eng. Struct., 41, 335-349. https://doi.org/10.1016/j.engstruct.2012.03.027.
  47. Shan, L. and Zhang, L. (2014), "Experimental study on mechanical properties of steel and polypropylene fiber-reinforced concrete", Appl. Mech. Mater., 584, 1355-1361. https://doi.org/10.4028/www.scientific.net/AMM.584-586.1355.
  48. Sun, L., Wei, M. and Zhang, N. (2017), "Experimental study on the behavior of GFRP reinforced concrete columns under eccentric axial load", Constr. Build. Mater., 152, 214-225. https://doi.org/10.1016/j.conbuildmat.2017.06.159.
  49. Tobbi, H., Benmokrane, B. and Farghaly, A. (2013), "Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios", ACI Struct. J., 111(2), 375-386. https://doi.org/10.14359/51686528.
  50. Tobbi, H., Ahmed, F. and Brahim, B. (2012), "Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars", ACI Struct. J., 109(4), 551-558. https://doi.org/10.14359/51683874.
  51. Wang, Q.S., Li, X.B., Zhao, G.Y., Shao, P. and Yao, J.R. (2008), "Experiment on mechanical properties of steel fiber reinforced concrete and application in deep underground engineering", J. China Univ. Min. Technol., 18, 64-81. https://doi.org/10.1016/S1006-1266(08)60014-0.
  52. Wang, X., Fan, F., Lai, J. and Xie, Y. (2021), "Steel fiber reinforced concrete: A review of its material properties and usage in tunnel lining", Struct., 34, 1080-1098. https://doi.org/10.1016/j.istruc.2021.07.086.
  53. Yazici, S., Inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater., 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025.
  54. Yue, Q.R., Ye, L.P. and Li, L. (2010), GB50608-2010 Technical Code for Infrastructure Application of FRP Composites, China Planning Press, Beijing, China.
  55. Zhang, X. and Deng, Z. (2018), "Experimental study and theoretical analysis on axial compressive behavior of concrete columns reinforced with GFRP bars and PVA fibers", Constr. Build. Mater., 172, 519-532. https://doi.org/10.1016/j.conbuildmat.2018.03.237.