DOI QR코드

DOI QR Code

Study on engineering properties of xanthan gum reinforced kaolinite

  • Zhanbo Cheng (School of Engineering, University of Warwick) ;
  • Xueyu Geng (School of Engineering, University of Warwick)
  • Received : 2021.09.24
  • Accepted : 2023.01.12
  • Published : 2023.06.25

Abstract

The strengthening efficiency of biopolymer treated soil depends on biopolymer type, concentration ratio, soil type, initial water content, curing time and mixing method. In this study, the physical and mechanical properties of xanthan gum (XG) treated kaolinite were investigated through compaction test, Atterberg limit test, triaxial test and unconfined compression test. The results indicated that the optimum water content (OWC) increased from 30.3% of untreated clay to 33.5% of 5% XG treated clay, while the maximum dry density has a slight increase from 13.96 kg/m3 to 14 kg/m3 of 0.2% XG treated clay and decrease to 2.7 kg/m3 of 5% XG treated clay. Meanwhile, the plastic limit of XG treated clay increased with the increase of XG concentration, while 0.5% XG treated clay can be observed the maximum liquid limit with 79.5%. Moreover, there are the ideal water content about 1.3-1.5 times of the optimum water content achieving the maximum dry density and curing time to obtain the maximum compressive strength for different XG contents, which the UCS is 1.52 and 2.07 times of the maximum UCS of untreated soil for 0.5% and 1% XG treated clay, respectively. In addition, hot-dry mixing can achieve highest UCS than other mixing methods (e.g., dry mixing, wet mixing and hot-wet mixing).

Keywords

Acknowledgement

The authors wish to acknowledge the support from the National Natural Science Foundation of China (51608323, 51678319) and this project has received funding from the European Union's Horizon 2020 research and innovation programme Marie Sklodowska-Curie Actions Research and Innovation Staff Exchange (RISE) under grant agreement No. 778360.

References

  1. ASTM D 4318 (2000), Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils, American Society for Testing and Material Standards, West Conshohocken, PA, USA.
  2. Ayeldeen, M., Negm, A. and El Sawwaf, M. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 371. https://doi.org/10.1007/s12517-016-2366-1.
  3. Barrere, G.C., Barber, C.E. and Daniels, M.J. (1986), "Molecular cloning of genes involved in the production of the extracellular polysaccharide xanthan by Xanthomonas campestris pv. campestris", Int. J. Biol. Macromol., 8, 372-374. https://doi.org/10.1016/0141-8130(86)90058-9.
  4. Benli, A., Karatas, M. and Sastim, M.V. (2017), "Influence of ground pumice powder on the bond behavior of reinforcement and mechanical properties of self-compacting mortars", Comput. Concrete, 20(3), 283-290. https://doi.org/10.12989/cac.2017.20.3.283.
  5. BS 1377-2 (1990), Methods of Test for Soils for Civil Engineering Purposes Part 2: Classification Tests, British Standards Institution (BSI), London, UK.
  6. BS 1377-4 (1990), Methods of Test for Soils for Civil Engineering Purposes-Part 4: Compaction-Related Tests, British Standards Institution (BSI), London, UK.
  7. Cabalar, A.F., Awraheem, M.H. and Khalaf, M.M. (2018), "Geotechnical properties of a low-plasticity clay with biopolymer", J. Mater. Civil Eng., 30(8), 04018170. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002380.
  8. Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.
  9. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  10. Chang, I., Im, J., Chung, M.K. and Cho, G.C. (2018), "Bovine casein as a new soil strengthening binder from diary wastes", Constr. Build. Mater., 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11.009.
  11. Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotech., 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
  12. Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
  13. Chen, T.T., Ho, C.L. and Wang, H.Y. (2018), "Study on engineering properties of ready-mixed soil and slag", Comput. Concrete, 21(5), 531-538. https://doi.org/10.12989/cac.2018.21.5.531.
  14. Cheng, Z. and Geng, X. (2021), "Soil consistency and interparticle characteristics of various biopolymer types stabilization of clay", Geomech. Eng., 27(2), 103-113. https://doi.org/10.12989/gae.2021.27.2.103.
  15. Cheng, Z. and Geng, X. (2022), "Laboratory investigation for engineering properties of sodium alginate treated clay", Struct. Eng. Mech., 84(4), 465. https://doi.org/10.12989/sem.2022.84.4.465.
  16. Dehghan, H., Tabarsa, A., Latifi, N. and Bagheri, Y. (2019), "Use of xanthan and guar gums in soil strengthening", Clean Technol. Environ., 21(1), 155-165. https://doi.org/10.1007/s10098-018-1625-0.
  17. Fatehi, H., Abtahi, S.M., Hashemolhosseini, H. and Hejazi, S.M. (2018), "A novel study on using protein based biopolymers in soil strengthening", Constr. Build. Mater., 167, 813-821. https://doi.org/10.1016/j.conbuildmat.2018.02.028.
  18. Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
  19. Habibi, H. and Khosravi-Darani, K. (2017), "Effective variables on production and structure of xanthan gum and its food applications: A review", Biocatal. Agric. Biotechnol., 10, 130-140. https://doi.org/10.1016/j.bcab.2017.02.013.
  20. Hansbo, S. (1957), A New Approach to the Determination of the Shear Strength of Clay by the Fall Cone Test, Royal Swedish Geotechnical Institute, Stockholm, Sweden.
  21. Hataf, N., Ghadir, P. and Ranjbar, N. (2018), "Investigation of soil stabilization using chitosan biopolymer", J. Clean. Prod., 170, 1493-1500. https://doi.org/10.1016/j.jclepro.2017.09.256.
  22. Jiang, T., Zhao, J.D. and Zhang, J.R. (2022), "Splitting tensile strength and microstructure of xanthan gum-treated loess", Sci. Rep., 12(1), 1-10. https://doi.org/10.1038/s41598-022-14058-4.
  23. Kang, X., Bate, B., Chen, R.P., Yang, W. and Wang, F. (2019), "Physicochemical and mechanical properties of polymer-amended kaolinite and fly ash-kaolinite mixtures", J. Mater. Civil Eng., 31(6), 04019064. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002705.
  24. Kang, Y., Li, P., Zeng, X., Chen, X., Xie, Y., Zeng, Y., Zhang, Y. and Xie, T. (2019), "Biosynthesis, structure and antioxidant activities of xanthan gum from Xanthomonas campestris with additional furfural", Carbohyd. Polym., 216, 369-375. https://doi.org/10.1016/j.carbpol.2019.04.018.
  25. Khatami, H.R. and O'Kelly, B.C. (2013), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron., 139(8), 1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.
  26. Kulshreshtha, Y., Schlangen, E., Jonkers, H.M., Vardon, P.J. and Van Paassen, L.A. (2017), "CoRncrete: A corn starch based building material", Constr. Build. Mater., 154, 411-423. https://doi.org/10.1016/j.conbuildmat.2017.07.184.
  27. Latifi, N., Eisazadeh, A., Marto, A. and Meehan, C.L. (2017), "Tropical residual soil stabilization: A powder form material for increasing soil strength", Constr. Build. Mater., 147, 827-836. https://doi.org/10.1016/j.conbuildmat.2017.04.115.
  28. Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: An eco-friendly additive for stabilization of tropical organic peat", Environ. Earth. Sci., 75, 825. https://doi.org/10.1007/s12665-016-5643-0.
  29. Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
  30. Mosaberpanah, M.A., Amran, Y.H. and Akoush, A. (2020), "Performance investigation of palm kernel shell ash in high strength concrete production", Comput. Concrete, 26(6), 577-585. https://doi.org/10.12989/cac.2020.26.6.577.
  31. Ni, J., Li, S.S. and Geng, X.Y. (2022), "Mechanical and biodeterioration behaviours of a clayey soil strengthened with combined carrageenan and casein", Acta Geotech., 17, 5411-5427. https://doi.org/10.1007/s11440-022-01588-4.
  32. Ni, J., Li, S.S., Ma, L. and Geng, X.Y. (2020), "Performance of soils enhanced with eco-friendly biopolymers in unconfined compression strength tests and fatigue loading tests", Constr. Build. Mater., 263, 120039. https://doi.org/10.1016/j.conbuildmat.2020.120039.
  33. Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Rec., 2101(1), 34-43. https://doi.org/10.3141/2101-05.
  34. Reddy, N.G., Nongmaithem, R.S., Basu, D. and Rao, B.H. (2020) "Application of biopolymers for improving the strength characteristics of red mud waste", Environ. Geotech., 40, 1-20. https://doi.org/10.1680/jenge.19.00018.
  35. Rosalam,S. and England, R. (2006), "Review of xanthan gum production from unmodified starches by xanthomonas comprestris sp", Enzyme Microb. Technol., 39(2), 197-207. https://doi.org/10.1016/j.enzmictec.2005.10.019.
  36. Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Sci. Rep., 10(1), 1-13. https://doi.org/10.1038/s41598-019-57135-x.
  37. Shi, L., Wang, Q.Q., Xu, S.L., Pan, X.D., Sun, H.L. and Cai, Y.Q. (2018), "Numerical study on clogging of prefabricated vertical drain in slurry under vacuum loading", Granul. Matter., 20, 74. https://doi.org/10.1007/s10035-018-0846-6.
  38. Smitha, S., Rangaswamy, K. and Keerthi, D.S. (2021), "Triaxial test behaviour of silty sands treated with agar biopolymer", Int. J. Geotech. Eng., 15(4), 484-495. https://doi.org/10.1080/19386362.2019.1679441.
  39. Sujatha, E.R. and Saisree, S. (2019), "Geotechnical behaviour of guar gum-treated soil", Soil. Found., 59(6), 2155-2166. https://doi.org/10.1016/j.sandf.2019.11.012.
  40. Tran, A.T.P., Chang, I. and Cho, G.C. (2019), "Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands", Geomech. Eng., 17(5), 475-483. https://doi.org/10.12989/gae.2019.17.5.475.
  41. Wang, J., Shi, W.J., Wu, W.Q., Liu, F.Y., Fu, H.T., Cai, Y.Q., Hai, J., Hu, X.Q. and Zhu, X.X. (2019), "Influence of composite flocculant FeCl3-APAM on vacuum drainage of river-dredged sludge", Can. Geotech. J., 56(6), 868-875. https://doi.org/10.1139/cgj-2018-0268.
  42. Wang, S., Zhao, X., Zhang, J., Jiang, T., Wang, S., Zhao, J. and Meng, Z. (2023), "Water retention characteristics and vegetation growth of biopolymer-treated silt soils", Soil Till. Res., 225, 105544. https://doi.org/10.1016/j.still.2022.105544.
  43. Wood, D.M. (1985), "Some fall cone tests", Geotech., 35(1), 64-68. https://doi.org/10.1680/geot.1985.35.1.64.
  44. Yu, Y., Wu, G., Sun, H. and Geng, X. (2019), "A practical consolidation solution based on the time-dependent discharge rate around PVDs", Transp. Geotech., 20, 100241. https://doi.org/10.1016/j.trgeo.2019.04.004.
  45. Zhang, G., Yin, H., Lei, Z., Reed, A.H. and Furukawa, Y. (2013), "Effects of exopolymers on particle size distributions of suspended cohesive sediments", J. Geophys. Res. Oceans, 118(7), 3473-3489. https://doi.org/10.1002/jgrc.20263.
  46. Zhang, J., Meng, Z., Jiang, T., Wang, S., Zhao, J. and Zhao, X. (2022), "Experimental study on the shear strength of silt treated by xanthan gum during the wetting process", Appl. Sci. BASEL, 12(12), 6053. https://doi.org/10.3390/app12126053.
  47. Zhao, Y., Zhuang, J., Wang, Y., Jia, Y., Niu, P. and Jia, K. (2020), "Improvement of loess characteristics using sodium alginate", B. Eng. Geol. Environ., 79(4), 1879-1891. https://doi.org/10.1007/s10064-019-01675-z.